ECON-UN 3211 - Intermediate Microeconomics

Recitation 10: Final Review

Matthew Alampay Davis
December 9, 2022

Pre-exam resources

1. Isaac's Extra Review problems (+ solutions)
2. I'm preparing notes running through the course topics at a conceptual level
3. My recitation recordings and slides (including feedback on midterm)
4. Feedback on problem set 6 (even if you got a 10)
5. Varian textbook in my folder (very good on imperfect competition)
6. Will update my Running Notes at some point; send me any specific questions
7. No promises but possible Zoom office hours the week of the exam

Plan for today

Bertrand competition: two cases

Equilibrium under Cournot vs. Stackelberg competition

Competitive equilibrium (Recitation 7, Practice Problem 2)

Any other topics to revisit? Easy to pull up slides or practice problems to go over

Bertrand competition: two cases

From Recitation 9, practice problem 3:
a) What price would each duopolist set if the other duopolist didn't exist

$$
P^{P}(Q)=2400-Q
$$

- Market demand

$$
\begin{aligned}
\Rightarrow \operatorname{TR}(Q) & =P^{D}(Q) \cdot Q \\
& =(2400-Q) Q \\
& =2400 Q-Q^{2} \\
\Rightarrow M R(Q) & =2400-2 Q
\end{aligned}
$$

$Q^{D}(p)=2400-p$
Firm 1: $M R=M C_{1}$ when $2-100-2 Q_{1}^{M}=20$

- Production costs

$$
\begin{aligned}
\Rightarrow Q_{1}^{M} & =\frac{2400-20}{2}=1190 \\
\Rightarrow P_{1}^{M} & =P^{D}(1190) \\
& =2400-1190=1210
\end{aligned}
$$

$$
\begin{aligned}
& C_{1}(Q)=20 Q \quad M C_{1}=20 \\
& C_{2}(Q)=10 Q \quad M C_{2}=10
\end{aligned}
$$

$$
\text { Firn 2: } \begin{aligned}
M R=M C_{2} \text { when } & 2400-2 Q_{2}^{M}=10 \\
\Rightarrow & Q_{2}^{M}=\frac{2400-10}{2}=1195 \\
\Rightarrow & P_{2}^{M}=P^{D}(1195) \\
= & 2400-1195=1205
\end{aligned}
$$

From Recitation 9, practice problem 3:
b) What is the outcome of Bertrand competition

Suppose fin 1 begins as a rompurst

$$
\Rightarrow \text { Sets } p=p_{j}^{M}=1210
$$

- Market demand

$$
Q^{D}(p)=2400-p
$$

- Production costs

$$
\begin{aligned}
& C_{1}(Q)=20 Q \\
& c_{2}(Q)=10 Q
\end{aligned}
$$

Then firm 2 enters
$B R_{2}\left(P_{1}=1210\right)=1205$ (just for this example,
Firn $) \quad\left(p_{2}=1205\right)=1204$
assume whale number prices)

Fin 1 setsprie of 21

$$
B R, \quad\left(p_{2}=20\right)=20
$$

$$
\begin{aligned}
& =19 \\
& \text { or } 20-\varepsilon
\end{aligned} \quad\left(\begin{array}{c}
\text { withat the arbitrarily small } \varepsilon>0)
\end{array}\right.
$$

From Problem Set 9, problem 2
b) If Firm A was a monopolist, what price would it charge?

If firm A was a monoputiot

$$
P D(Q)=2+0-\frac{Q}{2}
$$

- Market demand

$$
Q^{D}(p)=480-2 P
$$

- Production costs

$$
C_{A}(Q)=120 Q
$$

$$
C_{B}(Q)=240 Q
$$

$$
\begin{aligned}
\Rightarrow \text { set } M R_{A} & =M C_{4} \\
\Rightarrow 2+10-Q & =120 \\
\Rightarrow Q_{A}^{M} & =120 \\
\Rightarrow P_{A}^{M} & =240-\frac{120}{2} \\
& =180
\end{aligned}
$$

$$
Q_{A}^{M}=120, P_{A}^{M}=160
$$

From Problem Set 9, problem 2
c) Calculate the Nash Equilibrium (approximately if needed)

$$
\begin{aligned}
& \pi_{A}(P) \\
& \text { If } A \text { sets } P_{A}=240 \\
& \text { - Market demand } \\
& B R_{B}\left(P_{A}=210\right)=240 \\
& Q^{D}(p)=480-2 P B R_{A} \quad\left(P_{B}=240\right)=180 \frac{\text { NoT } 239}{\text { or } 240-\varepsilon} \\
& \text { why? } \\
& 7 \\
& \text { or } 240 \text { - } \\
& m \text { first example, } \\
& \text { Firms copy prim } \\
& \text { was great than } \\
& \text { commotion's } \\
& \text { mannol cost } \\
& \begin{aligned}
& \frac{d \pi A}{}\left(P_{A}\right) \\
& d P_{A}=0
\end{aligned}=480-4 P_{A}-240 \\
& \begin{aligned}
&\left.\frac{d \pi A}{d P_{A}}\right) \\
& d P_{A}=480-4 P_{A}-240 \\
& \Rightarrow P_{A}^{x}=180
\end{aligned} \\
& Q_{N E}=460-2\left(P_{N E}\right)=120 \\
& \text { - Production costs } D_{A}\left(p_{A}\right)=p_{P} \cdot G_{A}\left(p_{A}\right)-120 Q_{A}\left(P_{A}\right) \\
& C_{A}(Q)=120 Q \quad=\operatorname{PA}\left(460-2 P_{A}\right)-120\left(480-2 P_{A}\right) \\
& \underline{C_{B}(Q)}=240 Q=480 P_{A}-2 P_{A}^{2}-120.480-240 P_{A}
\end{aligned}
$$

From Problem Set 9, problem 2
d) Calculate the Deadweight Loss of the Nash Equilibrium

The competitue equllionus is whee morket dernerel meets the lowest cast fenction so that firms

- Market demand are supply the good at cost most efficiently.
In this case, st's woe firm A supplies the entire

$$
Q^{D}(p)=480-2 P
$$

$$
\text { market at prise }=M C_{A}=120
$$

- Production costs

$$
C E=P_{C E}^{*}=120, \quad Q_{C E}^{*}=Q^{P}\left(P_{C E}^{*}\right)
$$

$$
C_{A}(Q)=120 Q
$$

$$
C_{B}(Q)=240 Q
$$

From Problem Set 9, problem 2
d) Calculate the Deadweight Loss of the Nash Equilibrium

Discussion

- The setup of both games are very similar: two duopolists with different constant marginal costs facing a linear market demand function
- The key here is that profit functions are concave: even if you out-compete an opponent on prices, that does not mean you should set the highest possible price below their marginal cost
- In the first case, firm 1's monopolist profit function was maximized at quantity 1210, well above either firm's marginal costs of 20 and 10 so that meant profits were decreasing in price
- But in the second case, firm A's monopolist profit function was maximized at price 180, above its marginal cost but also well below firm B's marginal cost
- Deadweight loss is calculated relative to the case where the market demand meets the most efficient supply

Equilibrium under Cournot vs.

Stackelberg competition

From Final Review Problem 13
a) Calculate the Nash Equilibrium if these duopolists were to enter Cournot competition

- Market demand

$$
Q^{D}(p)=360-p
$$

- Production costs

$$
\begin{aligned}
P^{D}(Q) & =360-Q \quad, Q=q_{1}+q_{2} \quad \text { (market spp ply) } \\
p^{D}\left(q_{1}, q_{2}\right) & =360-q_{1}-q_{2} \\
\Rightarrow \pi_{2}\left(q_{2}\right) & =p^{D}\left(q_{2}\right) q_{2}-24 q_{2} \\
& =\left(360-q_{1}-q_{2}\right) q_{2}-24 q_{2} \\
& =\left(836-q_{1}\right) q_{2}-q_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}(q)=12 q \\
& c_{2}(q)=24 q
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{1}\left(q_{1}\right)=p^{0}\left(q_{1}\right) q_{1}-12 q_{1} \\
&=\left(360-q_{1}-q_{2}\right) q_{1}-12 q_{1} \\
&=\left(348-q_{2}\right) q_{1}-q_{1}^{2} \\
& \text { FOO } 2: 336-q_{1}=2 q_{2}-F O C_{1}= \\
& \text { FOX: } 348-q_{2}=2 q_{1} \longrightarrow-12-q_{1}+q_{2}=2\left(q_{2}-q_{1}\right) \\
&
\end{aligned}
$$

From Final Review Problem 13
a) Calculate the Nash Equilibrium if these duopolists were to enter Cournot competition

$$
q_{2}=9_{1}-12
$$

- Market demand

$$
Q^{D}(p)=360-p
$$

- Production costs

$$
\begin{aligned}
& c_{1}(q)=12 q \\
& c_{2}(q)=24 q
\end{aligned}
$$

Pluginto ether FOC:

$$
\begin{aligned}
& 336-q_{1}=2 q_{2} \\
&=2\left(q_{1}-12\right) \\
& \Rightarrow 336-q_{1}=2 q_{1}-24 \\
& \Rightarrow 360=3 q_{1} \\
& \Rightarrow q_{1}=120 \\
& \Rightarrow q_{2}=108 \\
& \Rightarrow Q=q_{1}+q_{2}=228 \\
& \Rightarrow p(Q)=360-228=132
\end{aligned}
$$

Nash Equlibrm Bs oren by

1. $q_{1}^{*}=1207$ Need all
2. $9_{2}^{*}=108$
for
$\frac{\text { values for }}{a \text { valid }}$
3. $P^{*}=132$

From Final Review Problem 13
a) Calculate the Subgame Perfect Nash Equilibrium if these duopolists were to enter Stackelberg competition with firm 1 playing first

Simian but thee B a timing element.

- Market demand

Firm 1 chooses q_{1} frow

- Firs 2 best responds to $q_{1}: q_{2}\left(q_{1}\right)$ the best responx
$Q^{D}(p)=360-p \quad$ Key her: because of thing, q, is defink: functly crodibk move
- Production costs
that firm 2 hos to respond to.
In Count, lack of credialily in simultiverss gam leeds to
$c_{1}(q)=12 q$
$c_{2}(q)=24 q$ To some work backwards:
- Firm 2 best responds to any choice q, by Firn 1
- firm 1 anticipates this best response and chooses 9_{1} that lead to the bast atone for them: $v_{1}\left(q_{1}, q_{2}\left(q_{1}\right)\right)^{10}$

From Final Review Problem 13
a) Calculate the Subgame Perfect Nash Equilibrium if these duopolists were to enter Stackelberg competition with firm 1 playing first

- Market demand

$$
\begin{aligned}
\pi_{2}\left(q_{2} \mid q_{1}\right) & =\left(360-q_{1}-q_{2}\right) q_{2}-24 q_{2} \\
& =\left(360-q_{1}-24\right) q_{2}-q_{2}^{2}
\end{aligned}
$$

$$
\mathrm{FOC}_{2}: 0=336-91-292
$$

$$
Q^{D}(p)=360-p
$$

- Production costs

$$
\begin{aligned}
& \pi_{1}\left(q_{1} \mid q_{2}\left(q_{1}\right)\right)=\left(360-q_{1}-q_{2}\left(q_{1}\right)\right) q_{1}-12 q_{1} \\
&=\left(348-q_{1}-\frac{336-q_{1}}{2}\right) q_{1} \\
&=(348-168) q_{1}-q_{1}^{2}+\frac{q_{1}^{2}}{2} \\
& F O C_{1}: 0=180-2 q_{1}+q_{1} \Rightarrow q_{1}^{*}=180 \\
& \Rightarrow q_{2}^{*}=q_{2}\left(q_{1}^{*}\right)=\frac{336-180}{2}=78 \Rightarrow Q^{*}=q_{1}^{*}+q_{2}^{*}=258
\end{aligned}
$$

From Final Review Problem 13
a) Calculate the Subgame Perfect Nash Equilibrium if these duopolists were to enter Stackelberg competition with firm 1 playing first

- Market demand

$$
Q^{D}(p)=360-p
$$

- Production costs

$$
c_{1}(q)=12 q
$$

$c_{2}(q)=24 q$ Compar to Courot NE:

$$
\left\{p^{*}=132, Q^{*}=228, q_{1}^{*}=120, q_{2}^{*}=106\right\}
$$

SPNE where moe efficient firm mans first: lows pika, highs quatty, $q_{1} \uparrow, q_{2} \downarrow$

Discussion

- In comparing Bertrand and Cournot, we said that the first was more cut-throat: unless firms are identical, the one with the lower marginal cost might relinquish profit but still dominate the entire market. Cournot is more accommodating as it allows firms of different efficiency to co-exist.
- We also said that their relevance depends on context: Bertrand better describes markets where firms can mobilize production very quickly, enter the market very easily, and consumers are very responsive while Cournot better describes markets where firms simultaneously make binding decisions ahead of time
- In Cournot vs. Stackelberg, the setups are very similar but the introduction of a timing element in Stackelberg competition gives a significant edge to the firm that chooses first
- Stackelberg thus better applies to markets where there is a clear first-mover advantage

Competitive equilibrium (Recitation
7, Practice Problem 2)

Competitive equilibrium (Recitation 7, Practice Problem 2)

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$

One type of firm

1. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(a) What is the aggregate demand in this market?

Competitive equilibrium (Recitation 7, Practice Problem 2)

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(b) What is the aggregate supply in this market?

Competitive equilibrium (Recitation 7, Practice Problem 2)

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$

One type of firm

1. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(c) Find the competitive equilibrium

Competitive equilibrium (Recitation 7, Practice Problem 2)

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$

One type of firm

1. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(d) What is consumer/producer surplus?

Competitive equilibrium (Recitation 7, Practice Problem 2)

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 5010 identical firms
(e) What is the new equilibrium?

Competitive equilibrium (Recitation 7, Practice Problem 2)

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 5010 identical firms
(f) What is the new consumer/producer surplus?

Competitive equilibrium (Recitation 7, Practice Problem 2)

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 5010 identical firms
(g) Do these changes in surplus make sense?
- The consumer population has not changed but prices have increased
- Thus, fewer consumers are being served so we should expect a decrease in CS
- There are fewer firms but prices have increased so effect on producer surprlus ambiguous
- However, prices have increased more than the quantity has decreased so total producer surplus has increased
- Each individual firm experiences an even more significant increase in surplus

Any other topics to revisit? Easy to pull up slides or practice problems to go over

