ECON-UN 3211 - Intermediate Microeconomics

Recitation 7: Introduction to general equilibrium

Matthew Alampay Davis
November 4, 2022

Plan for today

Midterm feedback

Practice questions for Problem Set 6

Introduction to general equilibrium

Practice questions for Problem Set 7

Midterm feedback

Q1. Find a utility function representing the following preferences

 (a) Jesabelle spends all of her income on the good with the lowest price- $u(x)=x_{1}+x_{2}$
- Also valid: symmetric concave preferences like $u(x)=\max \left\{x_{1}, x_{2}\right\}$
- Some people wrote $u(x)=\alpha x_{1}+\beta x_{2}$ but this only works when $\alpha=\beta$

Q1. Find a utility function representing the following preferences
(b) Carly always buys an equal number of units of good 1 and 2

- $u(x)=\min \left\{x_{1}, x_{2}\right\}$ (or $\operatorname{mm}\left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$
- Some people wrote
for as position marengo $u(x)=\min \left\{x_{1}, \beta x_{2}\right\}$ transformation $f($.$))$ $u(x)=\min \left\{\alpha x_{1}, \beta x_{2}\right\}$ but this only works when $\alpha=\beta$

Q2. With two budget lines, illustrate the income and substitution effects when the price of good 1 increases and preferences are Cobb-Douglas

- Draw the correct budget lines
- Show the correct direction of change: a price increase in good 1 means any substitution effect will involve consuming less of good 1 and more of good 2
- Label the effects properly: it's the change in x_{1} and x_{2}
- Capturing the zero cross-price effect of the Cobb-Douglas

Q4. Derive the Marshallian demand for preferences $u(x)=12 \sqrt{x_{1}}+x_{2}$

- Recognize this is an example of quasi-linear utility
- Our approch for these: assume an interior solution and see where it is feasible
- If nowhere, then we only have corner solutions
- If only in some places, then we will have piecewise demand and at least two cases (which is the case here)

Practice questions for Problem Set 6

1. A firm faces cost function $c(q)=10+2 q^{2}$ and demand $q=600-\frac{p}{2}$
(a) What is the optimum supply choice?

$$
\begin{aligned}
& \max _{q} p(q) \cdot q-c(q) \\
& \frac{p}{2}=600-q \\
& \Rightarrow p(q)=1200-2 q \\
& =\max _{q}(1200-2 q) \cdot q-\left(10+2 q^{2}\right) \\
& =\max _{q} 1200 q-2 q^{2}-10-2 q^{2} \\
& \mathrm{FOC}_{q}: 0=1200-8 q \\
& \Rightarrow q^{*}=\frac{1200}{6}=150 \\
& =\max _{q} \underline{1200 q-4 q^{2}-10} \\
& \text { SoC: }-8<0 \Rightarrow \pi(q) \text { is soncace } \\
& \text { and } q^{*} \quad \sigma \text { oft maximizing } \\
& \text { supply }
\end{aligned}
$$

1. A firm faces cost function $c(q)=10+2 q^{2}$ and demand $q=600-\frac{p}{2}$
(b) What is the resulting price?

$$
\begin{aligned}
& q^{*}=250 \\
& \begin{aligned}
p\left(q^{*}\right) & =1200-2(150) \\
& =1200-320 \\
& =900 \\
p^{*} & =900
\end{aligned}
\end{aligned}
$$

1. A firm faces cost function $c(q)=10+2 q^{2}$ and demand $q=600-\frac{p}{2}$
(c) What profit will the firm make?

$$
\begin{aligned}
\pi(q) & =p(q) \cdot q-c(q) \\
& =(1200-2 q) \cdot q-0-2 q^{2} \\
\pi(q) & =(1200-300) \cdot 150-10-2\left(3000^{2}\right. \\
& =900 \cdot 150-10-2.900 \\
& =89,9 q 0 \quad \pi(q)>\pi(0)
\end{aligned}
$$

$$
\begin{aligned}
\pi(0) & =\rho(0) \cdot 0-c(0) \\
& =10 \quad \text { (Boundary Conditions }
\end{aligned}
$$

$$
\therefore q^{*} \text { is profit-maximiziog }
$$

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$

One type of firm

1. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(a) What is the aggregate demand in this market?

$$
q_{A}^{D}(p)=0 \text { if } p>100
$$

$$
q_{3}^{D}(p)=0 \text { if } p>25
$$

$$
Q^{D}(p)=\left\{\begin{array}{l}
10 q_{D}^{D}(p)+20 q_{B}^{P}(p) \text { if } p \leq 25 \\
=10(100-p)+20(50-2 p) \\
=1000-10 p+1000-40 p \\
=2800-50 p- \\
10 q D(p)=10(100 r p) \text { if } 25<p \leq 100 \\
-\frac{1000-10 p}{0}-\cdots>100
\end{array}\right.
$$

2. Competitive equilibrium

Two types of consumers
(a) What is the aggregate demand in this

1. Type A demand: $q_{A}^{D}(p)=100-p$ market?
2. Type B demand: $q_{B}^{D}(p)=50-2 p$
(Same as proviass slide, just cleaner)
One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:
Q^{D}

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
if $p \leq 25$
if $25<p \leq 100$
if $p>100$

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(b) What is the aggregate supply in this market?

$$
\begin{aligned}
Q^{s}(p) & =50 q^{s}(p) \\
& =50 p
\end{aligned}
$$

$$
\begin{aligned}
& {[\text { in recitation, } 1 \text { mistakenly }} \\
& \text { wrote } 10 \text { instead of } 50]
\end{aligned}
$$

2. Competitive equilibrium

Two types of consumers
(c) Find the competitive equilibrium

1. Type A demand: $q_{A}^{D}(p)=100-p$

$$
Q^{D}(p)=Q^{S}(p)
$$

2. Type B demand: $q_{B}^{D}(p)=50-2 p$

One type of firm

1. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(d) What is consumer/producer surplus?

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$

One type of firm

1. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(d) What is consumer/producer surplus?

$$
C S=C S^{A}+C S^{B}
$$

$$
C S^{A}: Q_{A}^{D}\left(C_{P}\right)=10 q_{A}^{D}(p)
$$

$$
=1080-10 p
$$

$$
Q_{A}^{D}\left(P^{*}\right)=1000-10 \cdot 20=800
$$

$C S^{A}=\frac{1}{2}\left(Q_{A}^{D}\left(P^{*}\right)\right)\left(P_{A}^{D}(0)-P^{*}\right)$
$=\frac{1}{2}(600)(100-10(0)-20)$
$=\frac{1}{2}(800) \times 80=32,000$
2. Competitive equilibrium

Two types of consumers
(d) What is consumer/producer surplus?

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$

One type of firm

1. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms

$$
\begin{aligned}
C S^{B} & =\frac{1}{2}\left(Q_{B}^{D}(P D)\right)\left(P_{B}^{D}(0)-P^{*}\right) \\
& =\frac{1}{2}(200)(25-20) \\
& =500
\end{aligned}
$$

$$
\begin{aligned}
C S & =C S^{A}+C S^{B} \\
& =32,020+500 \\
& =32,500
\end{aligned}
$$

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(d) What is consumer/producer surplus?

$\frac{1}{2}\left(p^{*}-0\right)\left(q^{*}\right)$
$=(20 \times 1000) \cdot \frac{1}{2}$
$=(20,000) \cdot \frac{1}{2}$
$=10,000$

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 5010 identical firms
(e) What is the new equilibrium?

$$
Q^{D}(p)=Q^{S}(p)
$$

First assume both Types A and B participate

$$
2000-50 p=10 p
$$

$$
\Rightarrow p^{*}=\frac{2000}{60 p} \approx 33 \Rightarrow \begin{gathered}
\text { Typ B wall ot } \\
\text { proticiptes in equibores }
\end{gathered}
$$

Now sole assumiv inly Ty pu A participates:

$$
\begin{aligned}
& 10 \theta \theta-10 p=10 p \\
\Rightarrow & p^{*}=\frac{1000}{20}=50 \\
\Rightarrow & q^{*}=Q^{3}\left(p^{*}\right)=10 \cdot 50=500
\end{aligned}
$$

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$

One type of firm

1. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 5010 identical firms $\triangle P S=12,500-10,000=2,500$

Consumer surplus \downarrow, producer samples \uparrow

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 5010 identical firms

See recitation 6 for discussion of price and quantity effects
(g) Do these changes in surplus make sense?

- The consumer population has not changed but prices have increased

- Thus, fewer consumers are being served so we should expect a decrease in CS
- There are fewer firms but prices have ${ }^{p}$ increased so effect on producer surprlus ambiguous
- However, prices have increased more than the quantity has decreased so total producer surplus has increased
- Each individual firm experiences an even more significant increase in surplus

3. Taxes, subsidies, and deadweight loss
(a) Calculate the deadweight loss of a $\$ 300$ tax per unit on consumers

$$
\begin{aligned}
& \text { Pretax: } Q^{D}(p)=Q^{s}\left(c_{p}\right) \\
& Q^{D+t a x}=12000-10(p+300) \\
& \text { - } \left.Q^{D}(p)=12000-10 p\right] \\
& \text { - } Q^{S}(p)=15 p \\
& \text { Post nay } \\
& D N L=\frac{1}{2}\left(q^{\sigma}-q^{*}\right) \\
& \text { (300) } \\
& =220,200 \\
& \Rightarrow 12000-10 p=15 p \\
& \Rightarrow 25 p^{*}=12000 \\
& \Rightarrow p^{*}=\frac{12000}{25}=480 \\
& \Rightarrow q\left(p^{*}\right)=15(480) \\
& =7200 \\
& : 12000-10 p-300=15 p \\
& \Rightarrow p^{* *}=\frac{1}{25}(9000)=360 \\
& \Rightarrow q\left(p^{x-x}\right)=15.360=5400
\end{aligned}
$$

3. Taxes, subsidies, and deadweight loss

(a) Calculate the deadweight loss of a $\$ 300$ tax per unit on consumers

$$
\begin{aligned}
& \text { (} \begin{aligned}
& D+t \\
& Q^{+t}(p)=12000-10(p+300) p^{D+t}\left(q^{*}\right. \\
& \cdot Q^{D}(p)=12000-10 p \\
& \cdot Q^{S}(p)=15 p \\
& D W L=\frac{1}{2}\left(q^{*}-q^{* *}\right)((p+300)-p) \\
&=\frac{1}{2}(7200-5400)(300) \\
&=270,000
\end{aligned}
\end{aligned}
$$

Example 3: Taxes, subsidies, and deadweight loss
(b) Calculate the deadweight loss of a $\$ 300$ subsidy per unit to producers

$$
\cdot Q^{D}(p)=12000-10 p
$$

$$
\cdot Q^{S}(p)=15 p
$$

$$
\begin{aligned}
& \text { Post-subsidy }: 12000-10 p=15(p+300) \\
& \Rightarrow p^{* x}=\frac{1}{25}(12000-4500) \\
&=300 \\
& \Rightarrow q^{* x}=15 \cdot 300+4500 \\
&=9090
\end{aligned}
$$

$$
\Downarrow
$$

$$
\begin{aligned}
Q^{S}(p) & =15(p+300) \\
& =15 p+4500
\end{aligned}
$$

Example 3: Taxes, subsidies, and deadweight loss
(b) Calculate the deadweight loss of a $\$ 300$ subsidy per unit to producers

$$
\begin{aligned}
& \cdot Q^{D}(p)=12000-10 p \\
& \cdot Q^{S}(p)=15 p \\
& D W L=\frac{1}{2}\left(q^{x}-q^{* *}\right)\left(p^{* *}-p^{s}\left(q^{* *}\right)\right) \\
&=\frac{1}{2}(7200-9080)\left(p^{* *}-\left(p^{* *}+300\right)\right) \\
&=\frac{1}{2}(-1800)(-300) \\
&=220,880
\end{aligned}
$$

Introduction to general equilibrium

General equilibrium theory

General equilibrium the method

- Exogenous primitives (number of agents, number of goods, technologies, preferences, endowments)
- Simultaneous mutual resolution of agents behaviors as specified by primitives
- Result: "equilibrium" prices and quantities

General equilibrium the theory

- Assumptions: perfect competition

1. Price-taking behavior
2. Symmetric information
3. Markets for all goods

- These strong assumptions buy us an elegant theory integrating consumer and producer theory
- Key result: the fundamental theorems of welfare economics

Pure exchange: the Edgeworth box

Three basic economic activities:

1. Consumption
2. Production
3. Exchange

The Edgeworth box is a very simplified general equilibrium model of a pure exchange economy

- No production, just endowments

$$
w=\left(w^{A}, w^{B}\right)
$$

- Given initial endowments, preferences over the goods determine what exchange unfolds

Very simple and abstract

- Two agents exchange two goods according to initial endowments and the interaction of their preferences
- No production, firms, or mediums of exchange (i.e., money)

But rich in its insights

- Depicts how prices arise as a mechanism for clearing markets
- Depicts how preferences and endowments give rise to 'wealth'
- Depicts market efficiency and opportunities for mutual benefit

The Edgeworth box: capturing insights from consumer theory

We can plot the familiar lines from consumer theory

- Wealth/income as the product $p \cdot q$
- Budget lines divide the two budget sets capture relative prices between two goods
- Indifference curves reflect the two consumers' preferences

- Tangency condition for well-behaved preferences depict optimal consumer behaviors
- Tracing these bundles as budget line changes gives us offer curves

The Edgeworth box: equilibrium adjustments and prices as a rate of exchange

- Given a price vector, we see that the two tangent indifference curves may occur at different points
- Consumer 1 is in net demand for good 2 , consumer 2 in net supply
- Equilibrium adjustment: change the relative prices of the two goods so they are both tangent to the budget line at the same point
- In fact, the equilibrium budget line through initial endowments implies a price ratio where the two consumers' offer curves intersect

The Edgeworth box: Pareto optimality and contract curves

- An allocation x in the Edgeworth box is Pareto optimal/efficient if there is no other feasible allocation x^{\prime} that makes one consumer better off without making another worse off
- Trace out the points where indifference curves are just tangent to one another: the pared α sat contract wive
- For a given initial endowments, only a subset of the faidmot ane to sot is a

Pareto set given by MRS ${ }^{A}=$ MRS 3 Pareto improvement: we call this the cortuxctuctuve core

The Edgeworth box: Pareto optimality and contract curves

 is Pareto optimal/efficient if there x_{2}^{A} is no other feasible allocation x^{\prime} that makes one consumer better off without making another worse off

- Trace out the points where indifference curves are just tangent to one another: the PArete $/ 8$ et
contract cone

- For a given initial endowments, only a subset of the Contrut ave are is a
Pareto improvement: we call this the qoatiradt/aprye core

Practice questions for Problem Set 7

1. Competitive equilibrium with negative externalities
(a) Find the competitive equilibrium
2. Demand: $Q^{D}(p)=1200-8 p$

$$
\begin{aligned}
& 1200-8 p=2 p \\
& \Rightarrow p^{*}=120 \\
& \Rightarrow q^{*}=Q^{3}\left(p^{*}\right) \\
& =2(120) \\
& =240
\end{aligned}
$$

2. Supply: $Q^{S}(p)=2 p$
3. Externalities: $E(q)=-\frac{1}{16} q^{2}$

$$
\left(p^{*}, q^{*}\right)=(120,2+0)
$$

1. Competitive equilibrium with negative externalities
(b) Find the inverse demand function and inverse supply function

$$
\begin{aligned}
8 p & =1200-q \\
\Rightarrow p(q) & =\frac{1200-q}{8}
\end{aligned}
$$

2. Demand: $Q^{D}(p)=1200-8 p \longrightarrow p(q): Q^{S}(p)=2 p \xrightarrow{2}$
3. Externalities: $E(q)=-\frac{1}{16} q^{2}$

Results

$$
\cdot\left(p^{*}, q^{*}\right)=(120,240)
$$

1. Competitive equilibrium with negative externalities
(c) Find the marginal social value curve
2. Demand: $Q^{D}(p)=1200-8 p$
3. Supply: $Q^{S}(p)=2 p$
4. Externalities: $E(q)=-\frac{1}{16} q^{2}$

$$
\begin{aligned}
\operatorname{MsV}(q) & =p^{D}(q)+M E(q) \\
& =150-\frac{2}{8}-\frac{q}{8} \\
& =150-\frac{q}{4}
\end{aligned}
$$

Results $\frac{d E(q)}{d q}=M E(q)=-\frac{1}{8} q$

- $\left(p^{*}, q^{*}\right)=(120,240)$
- $p^{D}(q)=150-\frac{q}{8}$
- $p^{S}(q)=\frac{q}{2}$

1. Competitive equilibrium with negative externalities
(d) Find the surplus-maximizing quantity
2. Demand: $Q^{D}(p)=1200-8 p$
3. Supply: $Q^{S}(p)=2 p$

$$
\operatorname{MSV}(q)=p^{S}(q)
$$

3. Externalities: $E(q)=-\frac{1}{16} q^{2}$

Results

- $\left(p^{*}, q^{*}\right)=(120,240)$

$$
\Rightarrow 150-\frac{q}{4}=\frac{q}{2}
$$

$$
\begin{aligned}
\Rightarrow 150 & =\frac{3 q}{4} \\
\Rightarrow q^{2} & =150 \times \frac{4}{3} \\
& =200
\end{aligned}
$$

- $p^{D}(q)=150-\frac{q}{8}$
- $p^{S}(q)=\frac{q}{2}$
- $\operatorname{MSV}(q)=150-\frac{q}{4}$

1. Competitive equilibrium with negative externalities
(e) Calculate the deadweight loss of the competitive equilibrium
2. Demand: $Q^{D}(p)=1200-8 p$
3. Supply: $Q^{S}(p)=2 p$

$$
\begin{aligned}
\operatorname{MSV}\left(q^{*}\right) & =150-\frac{q^{2}}{8} \\
& =150-\frac{240}{8}=120
\end{aligned}
$$

3. Externalities: $E(q)=-\frac{1}{16} q^{2}$

Results

$$
\begin{aligned}
& \text { • }\left(p^{*}, q^{*}\right)=(120,240) \\
& \cdot p^{D}(q)=150-\frac{q}{8} \\
& \cdot p^{S}(q)=\frac{q}{2} \\
& \cdot \operatorname{MSV}(q)=150-\frac{q}{4}
\end{aligned}
$$

$$
\begin{aligned}
D W L & =\frac{1}{2}\left(p^{*}-M S V\left(q^{*}\right)\right)\left(q^{*}\right) \\
& =\frac{1}{2}\left(120-150+\frac{240}{4}\right)(240-200) \\
& =\frac{1}{2}(-30+60)(40) \\
& =\frac{1}{2}(30)(40)=600
\end{aligned}
$$

1. Competitive equilibrium with negative externalities
(f) Find the optimal per-unit tax for this market
2. Demand: $Q^{D}(p)=1200-8 p$
3. Supply: $Q^{S}(p)=2 p$

$$
\begin{aligned}
t^{\sigma} & =M E\left(2^{*}\right) \\
& =-\frac{1}{8} \cdot 240 \\
& =-60
\end{aligned}
$$

3. Externalities: $E(q)=-\frac{1}{16} q^{2}$

Results $M E(q)=\frac{-1}{8} \cdot q$

- $\left(p^{*}, q^{*}\right)=(120, \underline{240)}$
- $p^{D}(q)=150-\frac{q}{8}$
- $p^{S}(q)=\frac{q}{2}$
$t^{*}=\operatorname{MSV}\left(q^{*}\right)-D^{D}\left(q^{*}\right)$

$$
=M E(q)
$$

- $\operatorname{MSV}(q)=150-\frac{q}{4}$

1. Competitive equilibrium with negative externalities
(g) Find the optimal price floor and optimal price ceiling for this market
2. Demand: $Q^{D}(p)=1200-8 p$ Price floor: $p^{D}\left(q^{\infty<\infty}\right)$
3. Supply: $Q^{S}(p)=2 p$

$$
=150-\frac{q^{\infty x}}{8}
$$

3. Externalities: $E(q)=-\frac{1}{16} q^{2}$

Results

$$
=150-\frac{200}{8}
$$

$$
\begin{aligned}
& \cdot\left(p^{*}, q^{*}\right)=(120,240) \\
& \cdot \underbrace{p^{D}(q)=150-\frac{q}{8}} \\
& \cdot p^{S}(q)=\frac{q}{2} \\
& \cdot \operatorname{MSV}(q)=150-\frac{q}{4}
\end{aligned}
$$

$$
\begin{aligned}
& =125 \\
\text { Price ain } & \left.: M S V L_{q}^{5020}\right) \\
& =150-\frac{200}{4} \\
& =100
\end{aligned}
$$

2. Competitive equilibrium with $x \times 4 \mathrm{sctive} \mathrm{positive} \mathrm{externalities}$
(c) Find the marginal social value curve
3. Demand: $Q^{D}(p)=1200-8 p$
4. Supply: $Q^{S}(p)=2 p$

$$
\begin{aligned}
M S V(q) & =p D(q)+M E(q) \\
& =150-\frac{q}{8}+30 \\
& =180-q / 8
\end{aligned}
$$

3. Externalities: $E(q)=30 q$

Results

$$
M E(q)=30
$$

- $\left(p^{*}, q^{*}\right)=(120,240)$
- $p^{D}(q)=150-\frac{q}{8}$
- $p^{S}(q)=\frac{q}{2}$

2. Competitive equilibrium with negative positive externalities
(d) Find the surplus-maximizing quantity
3. Demand: $Q^{D}(p)=1200-8 p$
4. Supply: $Q^{S}(p)=2 p$

$$
\operatorname{MSV}(q)=p^{S}(q)
$$

3. Externalities: $E(q)=30 q$

Results

- $\left(p^{*}, q^{*}\right)=(120,240)$
- $p^{D}(q)=150-\frac{q}{8}$
- $p^{S}(q)=\frac{q}{2}$

$$
\Rightarrow 180-q / 8=q / 2
$$

$$
\begin{aligned}
\Rightarrow 180 & =5 q / 8 \\
\Rightarrow q^{+\infty} & =\frac{180 \cdot 8}{5} \\
& =288 \\
\Rightarrow p^{+\infty} & =\frac{q^{* x}}{2}=144
\end{aligned}
$$

- $\operatorname{MSV}(q)=180-\frac{q}{8}$

2. Competitive equilibrium with negative positive externalities
(e) Calculate the deadweight loss of the competitive equilibrium
3. Demand: $Q^{D}(p)=1200-8 p$

$$
\operatorname{DWL}=\frac{1}{2}\left(\operatorname{MSV}\left(q^{* *}\right)-p^{D}\left(q^{-\infty}\right)\right)\left(q^{*}-q^{-}\right)
$$

2. Supply: $Q^{S}(p)=2 p$

$$
=\frac{1}{2}\left(144-\left(150-\frac{2 * x}{8}\right)\right)(288-220)
$$

3. Externalities: $E(q)=30 q$

Results

$$
=\frac{1}{2}\left(144-\left(150-\frac{288}{8}\right)\right)(48)
$$

$$
\begin{aligned}
& \text { • }\left(p^{*}, q^{*}\right)=(120,240) \\
& \cdot p^{D}(q)=150-\frac{q}{8} \\
& \cdot p^{S}(q)=\frac{q}{2} \\
& \cdot \operatorname{MSV}(q)=180-\frac{q}{8}
\end{aligned}
$$

2. Competitive equilibrium with negative positive externalities
(f) Find the optimal per-unit tax for this market

1. Demand: $Q^{D}(p)=1200-8 p$

$$
\begin{aligned}
t & =M E\left(q^{*}\right) \\
& =30
\end{aligned}
$$

2. Supply: $Q^{S}(p)=2 p$
(positive number means subsidy of $\$$ solunt)
3. Externalities: $E(q)=30 q$

Results

$$
M E(q)=30
$$

- $\left(p^{*}, q^{*}\right)=(120,240)$
- $p^{D}(q)=150-\frac{q}{8}$
- $p^{S}(q)=\frac{q}{2}$
- $\operatorname{MSV}(q)=180-\frac{q}{8}$

2. Competitive equilibrium with negative positive externalities
(g) Find the optimal price floor and optimal price ceiling for this market
3. Demand: $Q^{D}(p)=1200-8 p$
4. Supply: $Q^{S}(p)=2 p$
5. Externalities: $E(q)=30 q$

Results

- $\left(p^{*}, q^{*}\right)=(120,240)$
- $p^{D}(q)=150-\frac{q}{8}$
- $p^{S}(q)=\frac{q}{2}$
- $\operatorname{MSV}(q)=180-\frac{q}{8}$

Here, the market equilbrom quality is low ir then the socially optimal quantity.
Price flows and ceings on any effective at reducing equitionion quatitros: Ny carrot induce increases in equiborion quantities. Thus, then a no optimal price fluor on city.

3. Exchange economies with an Edgeworth box

(a) Draw the Edgeworth box of this economy, depicting the initial endowment

Endowments w

1. $w^{A}=(75,25)$
2. $w^{B}=(25,25)$

Preferences

1. Cobb-Douglas: $u^{A}\left(x^{A}\right)=x_{1}^{A} x_{2}^{A}$
2. Perfect substitutes:

$$
U^{B}\left(x^{B}\right)=x_{1}^{B}+x_{2}^{B}
$$

3. Exchange economies with an Edgeworth box

(b) Graph the contract curve, the set of Pareto improvements, and the core

Endowments w

1. $w^{A}=(75,25)$
2. $w^{B}=(25,25)$

Preferences

1. Cobb-Douglas: $u^{A}\left(x^{A}\right)=x_{1}^{A} x_{2}^{A}$
2. Perfect substitutes:

$$
U^{B}\left(x^{B}\right)=x_{1}^{B}+x_{2}^{B}
$$

contract cure: MRS $^{A}=$ MRS B

$$
\begin{aligned}
& \Rightarrow \frac{M W_{1}^{A}}{M V_{2}^{A}}=\frac{M V_{1}^{B}}{M U_{2}^{B}} \\
& \Rightarrow x \beta^{3} / x_{1}^{Q}=1 / 1 \Rightarrow x_{1}^{B}=x_{1}^{A}
\end{aligned}
$$

3. Exchange economies with an Edgeworth box
(c) Graph the contract curve, the set of Pareto improvements, and the core

Endowments w

1. $w^{A}=(75,25)$
2. $w^{B}=(25,25)$

Preferences

1. Cobb-Douglas: $u^{A}\left(x^{A}\right)=x_{1}^{A} x_{2}^{A}$
2. Perfect substitutes complements:

$$
U^{B}\left(x^{B}\right)=\min \left\{x_{1}^{B}, x_{2}^{B}\right\}
$$

contract cure: MRSA $=\frac{M U_{1}^{A}}{M V_{2}^{A}}=\frac{x_{2}^{A}}{x_{1}^{A}}$

