ECON-UN 3211 - Intermediate Microeconomics

Recitation 6: The Producer's Problem II - The Supply Decision

Matthew Alampay Davis
October 28, 2022

Plan for today

Midterm feedback

Review of relevant concepts

The Producer's Problem II:
Profit maximization + supply choice

Practice questions

Midterm feedback
See recording of Recitation 7 for discussion of the greastion emphasized here

Q1. Find a utility function representing the following preferences

 (a) Jesabelle spends all of her income on the good with the lowest price- $u(x)=x_{1}+x_{2}$
- Also valid: symmetric concave preferences like $u(x)=\max \left\{x_{1}, x_{2}\right\}$
- Some people wrote $u(x)=\alpha x_{1}+\beta x_{2}$ but this only works when $\alpha=\beta$

Q1. Find a utility function representing the following preferences

 (b) Carly always buys an equal number of units of good 1 and 2- $u(x)=\min \left\{x_{1}, x_{2}\right\}$
- Some people wrote
$u(x)=\min \left\{\alpha x_{1}, \beta x_{2}\right\}$ but this only works when $\alpha=\beta$

Q2. With two budget lines, illustrate the income and substitution effects when

 the price of good 1 increases and preferences are Cobb-Douglas- Draw the correct budget lines
- Show the correct direction of change: a price increase in good 1 means any substitution effect will involve consuming less of good 1 and more of good 2
- Label the effects properly: it's the change in x_{1} and x_{2}
- Capturing the zero cross-price effect of the Cobb-Douglas

Q4. Derive the Marshallian demand for preferences $u(x)=12 \sqrt{x_{1}}+x_{2}$

- Recognize this is an example of quasi-linear utility
- Our approch for these: assume an interior solution and see where it is feasible
- If nowhere, then we only have corner solutions
- If only in some places, then we will have piecewise demand and at least two cases (which is the case here)

Review of relevant concepts

The Producer's Problem I: Cost Minimization (Recitation 5)

$$
\max (\text { Profit })=\max (\text { Revenue }- \text { Cost })=\max _{q}\{p(q) q-c(q)\}
$$

Step 1: Cost minimization

$$
\begin{array}{ll}
& \min _{\left\{x_{1}, x_{2}\right\}} w_{1} x_{1}+w_{2} x_{2} \\
\text { s.t. } & f\left(x_{1}, x_{2}\right) \geq q
\end{array}
$$

Derive:

- conditional factor demand functions

$$
\begin{aligned}
& x_{1}^{*}\left(w_{1}, w_{2}, q\right) \\
& x_{2}^{*}\left(w_{1}, w_{2}, q\right)
\end{aligned}
$$

- cost function

$$
c(q)=w_{1} x_{1}^{*}\left(w_{1}, w_{2}, q\right)+w_{2} x_{2}^{*}\left(w_{1}, w_{2}, q\right)
$$

- input prices w_{1}, w_{2}
- output quantity q

The Producer's Problem II: The Supply Decision

$$
\max (\text { Profit })=\max (\text { Revenue }- \text { Cost })=\max _{q}\{p(q) q-c(q)\}
$$

Step 2: The supply decision

$$
\begin{array}{ll}
& \max _{q} p(q) q-c(q) \\
\text { s.t. } & q \geq 0
\end{array}
$$

Given

- Consumer demand function $q(p)$
- Producers' cost function c(q)

Derive:

- Marginal revenue $\operatorname{MR}(q)$
- Marginal cost MC(q)
- Profit-maximizing supply decision $q^{*} \geq 0$
- Maximal profit $\pi^{*}=p\left(q^{*}\right) q^{*}-c\left(q^{*}\right)$

Total costs

The cost function we've derived is called the total cost function, which can be decomposed as such:

$$
T C(q)=F C+V C(q)
$$

- Fixed costs FC
- The costs that don't depend on quantity
- "Fixed" in the short run
- Variable costs VC(q)
- The costs that do depend on quantity
- Can be varied in the short run

Average costs

$$
A C(q)=\frac{C(q)}{q}
$$

- Cost function divided by quantity: the cost per unit of output

Marginal costs

$$
\begin{aligned}
M C(q) & =\frac{d T C(q)}{d q} \\
& =\frac{d F C(q)}{d q}+\frac{d V C(q)}{d q} \\
& =0+\frac{d V C(q)}{d q} \\
& =\frac{d V C(q)}{d q}
\end{aligned}
$$

- Since fixed costs don't depend on quantity, fixed costs do not affect marginal costs
- Marginal costs are the first
 derivative of the variable cost

$$
V C\left(q_{2}\right)=\int m\left(q_{2}\right) d p
$$

Relation between average costs and marginal costs

- For q such that $M C(q)<A C(q)$, then average costs are decreasing
- For q such that $M C(q)>A C(q)$, then average costs are increasing
- For q such that $M C(q)-A C(q)$, then average costs are at an inflection point (minimum/maximum)
- Some more in Chapter 22 but cannot fit into this recitation

The Producer's Problem II:
Profit maximization + supply choice

Market structure

$$
\begin{array}{ll}
& \max _{q} p(q) q-c(q) \\
\text { s.t. } & q \geq 0
\end{array}
$$

- $p(q)$ comes from inverting the demand function $q(p)$ the firm faces
- Whether or not this resembles the market demand function depends on market structure
- In a pure competitive market, the firm is a "price taker": $p(q)=p^{*}$
- The market supply function $q^{S}(p)$ is just the sum of all the individual firms' supply functions at a given \mathbf{P}

Individual firms are "pore takers": inporitible they carnot offed the prize the market choges : they the $p(q)=p^{*}$ as guan at all quartics

The supply decision

s.t. $q \geq 0$

- Constrained optimization problem
- First-order condition for an internal solution equates marginal revenue with marginal cost
- Second-order condition requires local concavity of the profit function at the local optimum
$\pi(q)$ banbury
 local grim optime

So to determer supply choice q^{*}, reed to compare

$$
\pi(0) \text { vs. } \pi\left(q_{1}\right) \text { vs. } \pi\left(q_{2}\right)
$$

Total revenue:

$$
T R(q)=p(q) q
$$

Marginal revenue: $M R(q)=\frac{d T R(q)}{d q}$

$$
\begin{aligned}
& =p^{\prime}(q) q+p(q) \frac{d q}{d q} \quad(\text { by Chan hulk) } \\
& =p^{\prime}(q) q+p(q)
\end{aligned}
$$

$$
\begin{gathered}
\text { price effect } \\
<0
\end{gathered}
$$

- $p(q)$ is the quantity effect: the increase in revenue from selling an additional unit of output, which is also the price at quantity q
- $p^{\prime}(q) q$ is the price effect: the decrease in revenue associated with having to lower the price on all previous units in order to be able to sell the qth unit

In reciotun 7, we look at effect of charges in market structure: firms leave the market. Tho decrease supply white has both a price after and quantity effect on prahoor arplis. We ask which affect is bigger

Marginal revenue

Total revenue:

$$
T R(q)=p(q) q
$$

Marginal revenue:

$$
\begin{aligned}
\operatorname{MR}(q) & =\frac{d T R(q)}{d q} \\
& =\frac{d p(q) q}{d q} \\
& =\frac{d p(q)}{d q} q+p(q) \frac{d q}{d q} \\
& =p^{\prime}(q) q+p(q)
\end{aligned}
$$

- In a perfectly competitive market, firms are price takers: $p(q)=p^{*}$ for all q
- $p(q)=p^{*}$ for all q so the quantity effect is always $p^{*}>0$
- Since price is independent of quantity: $p^{\prime}(q)=0$ and the price effect is zero
- In an imperfectly competitive market, optimally supplying an additional good requires decreasing the market price to meet demand
- $p^{\prime}(q)<0$ so the quantity effect is decreasing and the price effect is negative

The first-order condition

First-order condition:

$$
\begin{aligned}
M R(q) & =M C(q) \\
p^{\prime}(q) q+p(q) & =c^{\prime}(q)
\end{aligned}
$$

Under perfect corpostition,

$$
\begin{aligned}
& p(q)>p^{\star} \text { for all } q \text { (price takany firm) } \\
& \therefore p^{\prime}(q)=\frac{d p^{*}}{d q}=0 \\
& \therefore p(q)=p^{+}=c^{\prime}(q) \text { : the maund cost } \\
& \text { is jest the price } P^{*} \\
& \text { under permed compaction } \\
& \text { - If } M R \text { < } M C \text {, then the last unit was } \\
& \text { produced at a loss } \\
& \text { - Under pure competition, } p^{\prime}(q)=0 \\
& \text { and } p(q)=p^{*} \text { so } M R(q)=p^{*}=c^{\prime}(q) \\
& \text { - Otherwise, } p(q) \geq p^{*} \text { but } \\
& M R(q)=M C(q) \text { still holds }
\end{aligned}
$$

- The revenue gained by one more unit of output equals the cost of producing that additional unit
- If $M R>M C$, then profitable to produce more

The second-order condition

$$
\begin{aligned}
& \text { concarity of } \\
& \text { Second-order condition: } \\
& \frac{d^{2}\{p(q) q-c(q)\}}{d q^{2}}<0 \\
& \Rightarrow \frac{d}{d q}\left[p^{\prime}(q) q+p(q)-c^{\prime}(q)\right]<0, \\
& \Rightarrow p^{\prime \prime}(q) \cdot q+p^{\prime}(q) \cdot 1+p^{\prime}(q)-c^{\prime \prime}(q)<0 \\
& \Rightarrow p^{\nu}(q) \cdot q+2 p^{\prime}(q)-c^{\prime \prime}(q)<0 \\
& \text { the first dernatice } \\
& \text { of the grofit fundin function }
\end{aligned}
$$

(continued on reat olide)

The second-order condition (for a competitive firm): $\frac{d^{2}\{p(q) q-c(q)\}}{d q^{2}}<0 \Leftrightarrow c^{\prime \prime}(q)>0$
For a competitue form, $p(q)=p^{*}$ for all q

$$
\begin{aligned}
& \Rightarrow p^{\prime}(q)=0 \\
& \Rightarrow p^{\prime \prime}(q)=0
\end{aligned}
$$

So plagging into the expressien on prectors slide:

$$
p^{\nu}(q) \cdot q+2 p^{\prime}(q)-c^{\prime \prime}(q)<0
$$

$$
\underbrace{6}_{=0}
$$

i.e. The second-order candition requres the profit feraters to be concave at ary internd proft-mesimizing supply chetie.

$$
\Rightarrow-c^{\prime \prime}(q)<0
$$

Under perfect compection, this occors whenwer the coot

$$
\Rightarrow c^{\prime \prime}(q)>0
$$

fonation so conver (which also mens magind cost on increaving)
or equaderty, $\frac{d}{d q} M(l q)>0$

The second-order condition (for a competitive firm): $\frac{d^{2}\{p(q) q-c(q)\}}{d q^{2}}<0 \Leftrightarrow c^{\prime \prime}(q)>0$

The boundary condition: profit when $q=0$

- Computing local maxima give us candidates for the global maximum
- But we also need to check profit levels when $q=0$
- If a firm produces zero output, it still has to pay fixed costs F so profits at $q=0$ are $-F$
- Profits from producing at local maximum $\hat{q}>0$ are

$$
\pi(\hat{q})=p(\hat{q}) \hat{q}-V C(\hat{q})-F
$$

- So producing zero output is more profitable when

$$
\begin{aligned}
&-F>p(\hat{q}) \hat{q}-V C(\hat{q}-F \\
& \Rightarrow \frac{V C(\hat{q})}{\hat{q}}>p \\
& \Rightarrow \operatorname{AVC}(\hat{q})>p=\frac{\left.V R C_{2}\right)}{q}\left(\begin{array}{c}
\text { avergo } \\
\text { varimiou } \\
\text { reverve }
\end{array}\right)
\end{aligned}
$$

This is the "shutdown condition"

- Only when the marginal cost curve is above the AVC curve is it profitable to produce positive q

The boundary condition: profit when $q=0$

Practice questions
Solutions gives in annotated Recitation 7 slides

1. A firm faces cost function $c(q)=10+2 q^{2}$ and demand $q=600-\frac{p}{2}$ (a) What is the optimum supply choice?
2. A firm faces cost function $c(q)=10+2 q^{2}$ and demand $q=600-\frac{p}{2}$ (b) What is the resulting price?
3. A firm faces cost function $c(q)=10+2 q^{2}$ and demand $q=600-\frac{p}{2}$ (c) What profit will the firm make?

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms
(a) What is the aggregate demand in this market?

2. Competitive equilibrium

Two types of consumers
(b) What is the aggregate supply in this market?

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms

2. Competitive equilibrium

Two types of consumers

(c) Find the competitive equilibrium

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms

2. Competitive equilibrium

Two types of consumers
(d) What is consumer/producer surplus?

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 50 identical firms

2. Competitive equilibrium

Two types of consumers
(e) What is the new equilibrium?

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 5010 identical firms

2. Competitive equilibrium

Two types of consumers
(f) What is the new consumer/producer surplus?

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 5010 identical firms

2. Competitive equilibrium

Two types of consumers

1. Type A demand: $q_{A}^{D}(p)=100-p$
2. Type B demand: $q_{B}^{D}(p)=50-2 p$ One type of firm
3. Supply function $q^{S}(p)=p$

Suppose the market features:

- There are 10 Type A consumers
- There are 20 Type B consumers
- There are 5010 identical firms
(g) Do these changes in surplus make sense?
- The consumer population has not changed but prices have increased
- Thus, fewer consumers are being served so we should expect a decrease in CS
- There are fewer firms but prices have increased so effect on producer surprlus ambiguous
- However, prices have increased more than the quantity has decreased so total producer surplus has increased
- Each individual firm experiences an even more significant increase in surplus

3. Taxes, subsidies, and deadweight loss
(a) Calculate the deadweight loss of a $\$ 300$ tax per unit on consumers

- $Q^{D}(p)=12000-10 p$
- $Q^{S}(p)=15 p$

Example 3: Taxes, subsidies, and deadweight loss

(b) Calculate the deadweight loss of a $\$ 300$ subsidy per unit to producers

- $Q^{D}(p)=122000-10 p$
- $Q^{S}(p)=15 p$

