ECON-UN 3211 - Intermediate Microeconomics

Recitation 5: The Producer's Problem I - Cost Minimization

Matthew Alampay Davis
October 14, 2022

Logistics

- Midterm
- Consumer theory recordings now uploaded
- Today's recording will be posted by Saturday
- In addition to annotated notes, will also post midterm review exercises not covered today
- No problem set this week
- Problem Set 6 and recitation as usual next week

Today: reviewing producer theory up to cost minimization

Introduction to producer theory

The Producer's Problem I: Cost Minimization
Properties of production technologies
Solving the cost-minimization problem
Examples of production technologies

Other cost functions

Introduction to producer theory

Modeling the producer: what's a producer?

For our purposes, the producer is a 'firm' making production decisions to maximize profit π. But what even is a firm?

- Governments, oil companies, startups, independent artists: can one model describe all of them?
- Even in a classic 'firm', whose interests are the firm's interests?
- Corporate boards, middle managers, workers, consultants, even consumers
- Principal-agent problems: do different people have conflicts of interest?
- Structure: firm behavior when managers are owners? when workers are owners? when consumers are owners?
- Dynamics: do objectives change? are they consistent in short and long term?
- Other possible objectives: maximize revenue, quantity produced, employment, producer surplus, stock price; minimize output price?

The producer's problem

$$
\begin{aligned}
\max \pi & =\max (\text { Revenue }- \text { Cost }) \\
& =\max _{q}\{p(q) \times q-c(q)\}
\end{aligned}
$$

- Seems easy to solve
- In a perfectly competitive market, profits are always equal to zero and revenue is equal to costs
- But if markets are not perfectly competitive (which in real life is always), revenue and costs are generally not equal
- A single choice variable q with no apparent constraint?
- $p(q)$: the inverse demand function, comes from the "demand side"
- $c(q)$: the minimized cost of producing at quantity q
- So we break down the producer's problem into two parts

Profit maximization as two sequential optimizations

$$
\max _{q} p(q) \times q-c(q)
$$

I. Cost minimization:

- taking as given a desired quantity of production q, prices p, and technology $f\left(x_{1}, x_{2}\right)$
- find the least-cost method of producing q output using goods 1 and 2
II. The supply decision:
- given the cost function $c(q)$ derived in the first step
- choose the quantity of production $q^{*} \geq 0$ that maximizes profit

The Producer's Problem I: Cost
Minimization

The Producer's Problem I: Cost Minimization

$$
\max (\text { Profit })=\max (\text { Revenue }- \text { Cost })=\max _{q}\{p(q) q-c(q)\}
$$

Step 1: Cost minimization

$$
\begin{aligned}
& \min _{\left\{x_{1}, x_{2}\right\}} w_{1} x_{1}+w_{2} x_{2} \\
& \text { s.t. } f\left(x_{1}, x_{2}\right) \geq q
\end{aligned}
$$

Derive:

- conditional factor demand functions

$$
\begin{aligned}
& x_{1}^{*}\left(w_{1}, w_{2}, q\right) \\
& x_{2}^{*}\left(w_{1}, w_{2}, q\right)
\end{aligned}
$$

Given:

- technological constraint $f\left(x_{1}, x_{2}\right)$
- input prices w_{1}, w_{2}
- output quantity q
- cost function

$$
c(q)=w_{1} x_{1}^{*}\left(w_{1}, w_{2}, q\right)+w_{2} x_{2}^{*}\left(w_{1}, w_{2}, q\right)
$$

Cost minimization: comparisons to consumer's problem

Preferences

- Preferences: utility functions map bundles of goods $\left(x_{1}, x_{2}\right)$ to a level of utility
- Consumer compares how these goods contribute to their utility vs. how they are priced
- Evaluating these tradeoffs leads to optimal quantities
- Expenditure is the product of these good quantities and their prices
- Difference: utility is only ordinal

Technology

- Technology: production functions map bundles of inputs $\left(x_{1}, x_{2}\right)$ to a level of production
- Producer compares how these inputs contribute to their production vs. how they are priced
- Evaluating these tradeoffs leads to optimal input quantities
- Cost is the product of these input quantities and their prices
- Difference: production is "real", both ordinal and cardinal

Technology as a constraint

- Inputs or "factors of production" $\left(x_{1}, x_{2}\right)$ or (L, K)
- Given a bundle of inputs $\left(x_{1}, x_{2}\right)$, there is a limit to what can be produced under the available technology
- Figure: production set/function in single-input y - x space, similar to budget set/line
- Figure: isoquant in $x_{2}-x_{1}$ space, similar to indifference curve

Properties of production technologies: monotonicity and convexity

- More of any input will never reduce the amount you can produce
- Graph: production set

- Convexity: at least as efficient to produce using combinations of inputs as single inputs on their own
- Suppose there exist two ways of producing 1 unit of output

1. Method A using $\left(a_{1}, a_{2}\right)$ inputs
2. Method B using $\left(b_{1}, b_{2}\right)$ inputs

- Suppose we want to produce 100 units of output. We can use Method A 100 times or Method B 100 times
- Alternatively, any convex combination (e.g. 75 units under A, 25 units under B) could produce at least the same output with the same resources

Properties of production technologies: monotonicity and convexity

- More of any input will never reduce the amount you can produce
- Graph: production set
- "Free disposal" assumption

- Convexity: at least as efficient to produce using combinations of inputs as single inputs on their own
- Suppose there exist two ways of producing 1 unit of output

1. Method A using $\left(a_{1}, a_{2}\right)$ inputs
2. Method B using $\left(b_{1}, b_{2}\right)$ inputs

- Suppose we want to produce 100 units of output. We can use Method A 100 times or Method B 100 times
- Alternatively, any convex combination (e.g. 75 units under A, 25 units under B) could produce at least the same output with the ${ }_{10}$ same resources

Properties of production technologies: returns to scale

- Suppose we're initially producing $f\left(x_{1}, x_{2}\right)$
- What happens when we keep the mix of inputs the same, but just "scale" them up by doubling the inputs? Or tripling?
- Monotonicity assumption requires that output increases, but is this increase proportional? It depends on the production function $f\left(x_{1}, x_{2}\right)$
- This is a question we didn't address in consumer choice because utility is purely ordinal. Here, quantity produced is ordinal and cardinal so this is a pertinent question
- Mathematically, for some scaling factor $t>1$:

$$
\begin{aligned}
f\left(t x_{1}, t x_{2}\right) & =\operatorname{tf}\left(x_{1}, x_{2}\right) \\
& >\operatorname{tf}\left(x_{1}, x_{2}\right) \\
& <\operatorname{tf}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Constant returns to scale: $f\left(t x_{1}, t x_{2}\right)=t f\left(x_{1}, x_{2}\right)$

If we have a factory producing at $f\left(x_{1}, x_{2}\right)$, the technology has CRS if we can just build another three factories doing the same thing to quadruple production
$f(x)$

- When there are productivity benefits from scaling
- Example: Silicon Valley tech companies locate near each other for mutual benefit

Decreasing returns to scale: $f\left(t x_{1}, t x_{2}\right)<t f\left(x_{1}, x_{2}\right)$

Non-textbook example: low-hanging fruit

- Imagine I'm one farmer working one acre of land to produce $f(1,1)$
- I can buy another acre and hire another farmer to produce $f(2,2)$
- But if the first plot of land I bought was the best piece of land available, then the next plot of land might have worse features (different geography, less fertile soil) and so it won't be as productive

- Then $f(2,2)<2 f(1,1)$

Example 1: $f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{2}$

$$
\begin{aligned}
f(t x) & =\left(t x_{1}\right)^{2}\left(t x_{2}\right)^{2} \\
& =t^{4} x_{1}^{2} x_{2}^{2} \\
& =t^{4} \quad f\left(x_{1}, x_{2}\right) \\
& =t^{3} \quad t f\left(x_{1}, x_{2}\right) \geq t f\left(x_{1}, x_{2}\right) \text { when } t \geq 1
\end{aligned}
$$

IRS

Example 2: $f\left(x_{1}, x_{2}\right)=A x_{1}^{\alpha} x_{2}^{\beta}$

$$
\begin{aligned}
& f\left(t x_{1}, t x_{2}\right)= A\left(t x_{1}\right)^{\alpha}\left(t x_{2}\right)^{\beta} \\
&= A t^{\alpha+\beta} x_{1}^{\alpha} x_{2}^{\beta} \\
&= t^{\alpha+\beta} A x_{1}^{\alpha} x_{2}^{\beta} \quad \text { vs. } t A x_{1}^{\alpha} x_{2}^{\beta} \\
& \text { IRS if } \alpha+\beta=1 \\
& \text { CRS if } \alpha+\beta=1 \\
& \text { DRS if } \alpha+\beta<1
\end{aligned}
$$

Marginal product and the technical rate of substitution

Marginal product $M P_{i}\left(x_{1}, x_{2}\right)$

- The additional output that results from using an additional unit of input i, keeping the other inputs fixed
- Comparable to marginal utility (but with a direct interpretation)

Technical rate of substitution $\operatorname{TRS}\left(x_{1}, x_{2}\right)$

- The amount of input needed to offset the production lost by reducing input 2 by one unit
- Comparable to the marginal rate of substitution (tradeoff between goods that maintains the same level of utility)
- Equivalent to the slope of the isoquant (comparable to the slope of the indifference curve)

Diminishing marginal product and diminishing technical rate of substitution

Diminishing MP

- We are looking at the production resulting from a one-unit increase in one input, holding all other inputs fixed (so no tradeoff)
- Example: farmer working in a large field (changing labor input, holding land input fixed)

Diminishing TRS

- Slope of isoquant decreases in magnitude as x_{1} increases, increases as x_{2} increases
- There is some intermediate value at which the marginal products of the two inputs are equal and so TRS is -1

Solving the cost-minimization problem

$$
\begin{array}{ll}
& \min _{\left\{x_{1}, x_{2}\right\}} w_{1} x_{1}+w_{2} x_{2} \\
\text { s.t. } & f\left(x_{1}, x_{2}\right) \geq q
\end{array}
$$

- Interior solution for well-behaved technology comes from constraint binding + a tangency condition:

$$
\operatorname{TRS}\left(x_{1}, x_{2}\right)=-\frac{M P_{1}\left(x_{1}, x_{2}\right)}{M P_{2}\left(x_{1}, x_{2}\right)}=-\frac{w_{1}}{w_{2}}
$$

- The solution to the optimization problem is the conditional factor demand:

$$
x^{*}\left(w_{1}, w_{2}, q\right)
$$

"Conditional" because it is conditional on wanting to produce at some output level q, which may not be the optimal quantity q^{*} to maximize profit

- Plug into the objective function to get the optimized cost function

Fixed-proportions production: $f\left(x_{1}, x_{2}\right)=\min \left\{\alpha x_{1}, \beta x_{2}\right\}$

- Example: doing home improvement
- Inputs: one person, one hammer
- An additional hammer doesn't make one person more productive
- An additional person doesn't make one hammer more productive
- Straightforward comparison to perfect complements in consumer theory

Fixed-proportions production: $f\left(x_{1}, x_{2}\right)=\min \left\{\alpha x_{1}, \beta x_{2}\right\}$

- If we want to produce q units of output, we need at least $\frac{q}{\alpha}$ units of x_{1} and $\frac{q}{\beta}$ units of x_{2}
- Clearly we do not want to use any more than those amounts or else costs will go up for the same level of production
- Then clearly cost function will be

$$
c\left(w_{1}, w_{2}, q\right)=w_{1} \frac{q}{\alpha}+w_{2} \frac{q}{\beta}
$$

Another wy of thinker tea this case: we dust oar e abut harness and friends indniduolly. We only oar abet a "compared int" compressed of α units of input 1 and β units of ingot 2 . In this case, $\alpha=\beta=1$ and the compared input is "a fried with there un harms" Simile to consumer cave: dunt car about wheels and hardebors molwidarly. Jat bikes.

Her, $\left(\frac{N_{1}}{\alpha}+\frac{\omega_{2}}{\beta}\right)$ is hew much it costs a corpind apt to pradiee ore int of ostpt.

Perfect substitutes production: $\alpha x_{1}+\beta x_{2}$

Hows spent typing up
 pset

- Example: I can complete an exam using a red pen or a blue pen
- Similar: I can complete a problem set by hand or by typing it up. They are perfect substitutes even though one may take me one hour and the other two hours.

Perfect substitutes production: $\alpha x_{1}+\beta x_{2}$

- The firm will only use the input that's
- cost efficient (most productive per unit cost): $\max \left\{\frac{\alpha}{w_{1}}, \frac{\beta}{w_{2}}\right\}$
- or equivalently, least costly per unit product (lowest cost per unit product): $\min \left\{\frac{w_{1}}{\alpha}, \frac{w_{2}}{\beta}\right\}$
- Then clearly cost function will be

$$
c\left(w_{1}, w_{2}, q\right)=\min \left\{\frac{w_{1}}{\alpha}, \frac{w_{2}}{\beta}\right\} q
$$

$$
M\left(\mid \omega_{1}, \omega_{2}, g\right)=\operatorname{mn}\left\{\frac{\omega_{1}}{a}, \frac{\omega_{2}}{\beta}\right\}
$$

Cobb-Douglas production: $f\left(x_{1}, x_{2}\right)=A x_{1}^{\alpha} x_{2}^{\beta}$

Unlike in the preference case, magnitudes here matter and have a specific interpretation

- α and β measure the relative input intensity of production of the two inputs
- If α increases relative to β, production uses more units of input 1 to produce a certain amount
- These also have interpretations as output elasticities
- The magnitudes of $\alpha+\beta$ also matter later when we talk about returns to scale

$$
\begin{aligned}
y & =A x_{1}^{\alpha} x_{2}^{\beta} \\
\log y & =\log A+\alpha \log x_{1}+\beta \log x_{2} \\
\frac{\partial \log y}{\partial \log x_{1}} & =\alpha \quad \frac{\partial \log y}{\partial \log x_{2}}=\beta
\end{aligned}
$$

亢
Output elasticities of factors ot production:
Incressry x_{1} by 1% leads to $\alpha \%$ morale on atpout $4 x_{2}$ " $\beta \%$
\therefore Incurring $\left(x_{1}, x_{2}\right)$ by $100 \times t \% \Rightarrow 100 \times(\alpha+\beta) \%$ newer m out
The definition of returns to scale: IRS: if $\alpha+\beta>1$ IRS $\quad=124$ pRS <1

Cobb-Douglas production: $f\left(x_{1}, x_{2}\right)=A x_{1}^{\alpha} x_{2}^{\beta}$

- Unlike in the preference case, magnitudes here matter and have a specific interpretation
- A is roughly a measure of the scale of production
- α and β measure the relative production intensity of the two goods while A scales how much of the output good these combine to produce
- Sort of a multiplier indicating how advanced the technology is
- We can imagine technology becoming more efficient, which increases A

Example: Cobb-Douglas production: $f\left(x_{1}, x_{2}\right)=A x_{1}^{\alpha} x_{2}^{\beta}$
Solving the general cate is a bit tedius so skipping steps:

$$
\begin{aligned}
& x_{1}^{*}\left(w_{1}, w_{2}, q\right)=\left(\frac{A}{q}\right)^{\alpha+\beta}\left(\frac{\alpha w_{2}}{\beta w_{1}}\right)^{\frac{\beta}{\alpha+\beta}} \\
& x_{2}^{*}\left(w_{1}, w_{2}, q\right)=\left(\frac{A}{q}\right)^{\alpha+\beta}\left(\frac{\beta w_{1}}{\alpha w_{2}}\right)^{\frac{\alpha}{\alpha+\beta}}
\end{aligned}
$$

Example: Cobb-Douglas production: $f\left(x_{1}, x_{2}\right)=A x_{1}^{\alpha} x_{2}^{\beta}$
Mulipy by mant prices $\left(\omega_{1}, \omega_{2}\right)$ or (ω, r) for Lobor ad Copobl:

$$
\begin{gathered}
c\left(w_{1}, w_{2}, q\right)=\left(\frac{A}{q}\right)^{\alpha+\beta} w_{1}^{\frac{\alpha}{\alpha+\beta}} w_{2}^{\frac{\beta}{\alpha+\beta}}\left(\frac{\alpha}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}\left(\frac{\beta}{\alpha}\right)^{\frac{\alpha}{\alpha+\beta}} \\
M C\left(w_{1}, w_{2}, q\right)=\frac{(\alpha+\beta) A^{\alpha+\beta}}{q^{1-(\alpha+\beta)}} w_{1}^{\frac{\alpha}{\alpha+\beta}} w_{2}^{\frac{\beta}{\alpha+\beta}}\left(\frac{\alpha}{\beta}\right)^{\frac{\beta}{\alpha+\beta}}\left(\frac{\beta}{\alpha}\right)^{\frac{\alpha}{\alpha+\beta}}
\end{gathered}
$$

Other cost functions

Total costs

The cost function we've derived is called the total cost function, which can be decomposed as such:

$$
T C(q)=F C+V C(q)
$$

- Fixed costs FC
- The costs that don't depend on quantity
- "Fixed" in the short run
- Variable costs VC(q)
- The costs that do depend on quantity
- Can be varied in the short run

Average costs

$$
A C(q)=\frac{c(q)}{q}
$$

- Cost function divided by quantity: the cost per unit of output
- Average cost = average fixed costs + average variable costs

Marginal costs

$$
\begin{aligned}
\operatorname{MC(q)} & =\frac{d T C(q)}{d q} \\
& =\frac{d F C(q)}{d q}+\frac{d V C(q)}{d q} \\
& =0+\frac{d V C(q)}{d q} \\
& =\frac{d V C(q)}{d q}
\end{aligned}
$$

- Since fixed costs don't depend on quantity, fixed costs do not affect marginal costs
- Marginal costs are the first derivative of the variable cost

$$
V\left(q_{q}\right)=\int M\left(c_{q}\right) d q
$$

Relation between average costs and marginal costs

Costs

- For q such that $M C(q)<A C(q)$, then average costs are decreasing
- For q such that $M C(q)>A C(q)$, then average costs are increasing
- For q such that $M C(q)=A C(q)$, then average costs are at an inflection point (minimum/maximum)
- Some more in Chapter 22 but cannot fit into this recitation

$$
A C^{\prime}(\hat{q})=0
$$

$A C^{\prime \prime}(\hat{q})>0$ means load minimum

Next week: The Producer's Problem II: The Supply Decision

$$
\max (\text { Profit })=\max (\text { Revenue }- \text { Cost })=\max _{q}\{p(q) q-c(q)\}
$$

Step 2: The supply decision

$$
\max _{q} p(q) q-c(q)
$$

Given

- Consumer inverse demand function $q(p)$
- Producer cost function c(q)

Derive:

- Marginal revenue $M R(q)$
- Marginal cost MC(q)
- Profit-maximizing supply decision $q^{*} \geq 0$
- Maximal profit $\pi^{*}=p\left(q^{*}\right) q^{*}-c\left(q^{*}\right)$

