ECON-UN 3211 - Intermediate Microeconomics

Recitation 2: Hicksian demand and special well-behaved preferences

Matthew Alampay Davis
September 23, 2022

Quick review: optimization and
Marshallian demand

The elements of an optimization problem

Solution: the values of the choice variables that best satisfy the objective function while satisfying the constraints

$$
\begin{aligned}
& x_{1}^{*} \text { (primitives) }=h_{1} \text { (primitives) } \\
& x_{2}^{*} \text { (primitives) }=h_{2} \text { (primitives }
\end{aligned}
$$

Astensk * denotes the se are "Optimized" in that they solve the optimization problem

The consumer's utility maximization problem

1. Objective function max $u\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right)$
2. Choice variables $\left\{x_{1}, x_{2}\right\}$
3. Constraints st. $p_{1} x_{1}+p_{2} x_{2} \leq m$

Solution: the affordable bundle that delivers the most utility

- We call this Marshallian demand $x_{1}^{*}\left(p_{1}, p_{2},\right)$ and $x_{2}^{*}\left(p_{1}, p_{2}, m\right)$
- Equivalently written $\stackrel{*}{x}(p, m)$ where $x^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)$ and $p=\left(p_{1}, p_{2}\right)$ are vectors
- These Marshallian demand functions give us the optimal bundle of a consumer with the given preferences, for any prices $p>0$ and budget $m>0$ given

$$
\begin{aligned}
& x_{1}^{*}\left(p_{1}, p_{2}, m\right)=g_{1}\left(p_{1}, p_{2}, m\right) \\
& x_{2}^{*}\left(p_{1}, p_{2}, m\right)=g_{2}\left(p_{1}, p_{2}, m\right)
\end{aligned}
$$

Marshallian demand $x(p, m)$ and indirect utility $v(p, m)$

1. Given prices p and budget m, what is the maximum amount of utility a consumer with the preferences $u\left(x_{1}, x_{2}\right)$ can achieve?
2. We already have an expression for the quantities that maximize utility for any given p and $m: x^{*}(p, m)$
3. So just substitute optimal quantities x^{*} for choice quantities x in the original utility function $u\left(x_{1}, x_{2}\right): v(p, m) \equiv u\left(x_{1}^{*}\left(x^{*}(p, m)\right)\right)$
4. We distinguish indirect utility using v instead of u to indicate it reflects an optimization result and that it is a function of p and m rather than x_{1} and x_{2}
5. Roy's identity gives us the reverse:

$$
x_{i}^{*}(p, m)=-\frac{\frac{\partial v(p, m)}{\partial p_{i}}}{\frac{\partial v(p, m)}{\partial m}}
$$

Optimization methods for well-behaved preferences: Marshallian demand

1. System of simultaneous equations (see laot week's slides for an example)
1.1 Tangency condition: MRS = price ratio (implicitly comes from assumption of convexity and interior solution)
1.2 Binding constraint: expenditures = income I (monotonicity)
1.3 Solve the system of two equations in two unknowns
2. Convert to an unconstrained optimization problem
2.1 Binding constraint: expenditures = income

- Solve for one choice variable x_{1} in terms of primitives (p_{1}, p_{2}, m) and the other choice variable x_{2} (or vice versa)
2.2 Plug this expression for x_{1} (or x_{2}) into the objective function
2.3 Solve as an unconstrained optimization problem with one first-order condition (tangency condition) then plug into the expression for x_{2} (or x_{1})

3. The method of Lagrange multipliers (not covered)

The consumer's expenditure minimization problem

1. Objective function $\min \quad p_{1} x_{1}+p_{2} x_{2}$
2. Choice variables $\left\{x_{1}, x_{2}\right\}$
3. Constraints s.t. $u\left(x_{1}, x_{2}\right)=\bar{u}$, some desinad level of ofility

Solution: the affordable bundle that least expensively achieves utility level \bar{u}

- We call this Hicksian demand $x_{1}^{h}\left(p_{1}, p_{2}, \bar{u}\right)$ and $x_{2}^{h}\left(p_{1}, p_{2}, \bar{u}\right)$
- Use "expenditure" rather than "cost" just because cost in microeconomics is usually associated with production

Optimization methods for well-behaved preferences: Hicksian demand

1. System of simultaneous equations
1.1 Tangency condition: MRS = price ratio (same tangency condition)
1.2 Binding constraint: utility function equals level \bar{u} (different constraint)
1.3 Solve the system of two equations in two unknowns (primitive \bar{u} instead of m)
2. Convert to an unconstrained optimization problem
2.1 Binding constraint: utility function equals level \bar{u} (different constraint)

- Solve for one choice variable x_{1} in terms of primitives $\left(p_{1}, p_{2}, \bar{u}\right)$ and the other choice variable x_{2} (or vice versa) (primitive \bar{u} instead of m)
2.2 Plug this expression for x_{1} (or x_{2}) into the objective function (expenditure rather than utility)
2.3 Solve as an unconstrained optimization problem with one first-order condition (same tangency condition) then plug into the expression for x_{2} (or x_{1})

3. The method of Lagrange multipliers (not covered)

Graphical anparison
The chilly maximization proven

Given budget $m_{\text {, what's the }}^{p_{1}}$ highest indifference carve I con afford to access?

The expoditive

Given desired led of utility \bar{u} which ha corresponding indifference curve in black, what's the smallest budget that still lets one access it?

Quick review: preferences and the tangency condition

 client for optimality$$
M R S=\text { price ratio } \equiv \frac{M U_{1}}{M U_{2}}=\frac{p_{1}}{p_{2}} \Leftrightarrow \frac{M U_{1}}{p_{1}}=\frac{M U_{2}}{p_{2}}
$$

Necessary: the optimal bundles satisfy the tangency condition

1. Preferences have indifference curves everywhere differentiable (no kinks)
2. Preferences have interior solutions only (rules out concave preferences)
3. Necessary, but not sufficient: optimal bundles satisfy the tangency condition but bundles that satisfies the tangency condition may not be optimal
Test your understanding: concave prof ernes are fondues of moth ore good: cover splice

- How does requiring only interior solutions rule out concave preferences? (combos
- Are there well-behaved preferences that are ruled out here?

Conex pobecres

Corcan peffores:

For "well-behaved" preferences, the tangency condition is necessary and sufficient for optimality

$$
M R S=\text { price ratio } \equiv \frac{M U_{1}}{M U_{2}}=\frac{p_{1}}{p_{2}} \Leftrightarrow \frac{M U_{1}}{p_{1}}=\frac{M U_{2}}{p_{2}}
$$

Necessary and sufficient: any bundle that satisfies the tangency condition must be optimal

1. Preferences are monotonic
2. Preferences are convex

Test your understanding: are there preferences that are...

- convex with exactly one corner solution?
- convex with exactly two corner solutions?
- neither convex nor concave?

Ore comer solution

Two corner solutions

Neither convex nor concave Som intervals ore strictly convex, some ascus
\therefore truentre indistionce wire is neither Both conex and concave (weakly)

Linear cures (straight \mid w os) ok both weakly convex and weakly concur
"Well-behaved" preferences guarantee that the tangency condition is necessary and sufficient for optimality

$$
M R S=\text { price ratio } \equiv \frac{M U_{1}}{M U_{2}}=\frac{p_{1}}{p_{2}} \Leftrightarrow \frac{M U_{1}}{p_{1}}=\frac{M U_{2}}{p_{2}}
$$

Necessary and sufficient and unique: if an interior bundle satisfies the tangency condition and it must be the unique optimal choice

1. Preferences are monotonic
2. Preferences are strictly convex

Note: neither non-strict nor strict convexity guarantees the existence of an interior bundle that satisfies the tangency condition

Well-behaved preferences beyond the tangency condition

Perfect complements

- Possible examples
- Left shoes vs. right shoes
- Rolling paper vs. tobacco
- Handlebars vs. wheels
- Intuition: we don't really care about the two goods. We only care about the composite good made up of a units of good 2 and b units of good 1
- How do we get from preferences to indifference curves to utility functions?

Perfect complements

Intuition: substitution doesn't make wheels (1) the kans are optimal for an beret Inc sense so the MRS is undefined

- If you're at the kink point, sacrificing any amount will strictly decrease utility
- If you're not at the kink point
- Sacrificing a marginal amount of the excess good for the other will not change utility
- Sacrificing a marginal amount of the non-excess good for the other can only decrease utility

Perfect complements: algebraic argument
u (wheel, handlebars) $=u(W, H)=\min \{W, 2 H\}$ from the complementanty rato (CR)
(1) CR: $W=2 H$, the equation that passes though at kinks/optimel bundles
(2) $B C: P_{w} w+P_{t} H=m$

Substitutry (1) not (2), $P_{W} \cdot 2 H^{*}+P_{N} H^{*}=m$

$$
\Rightarrow H^{*}=\frac{m}{2_{P W}+P_{4}}
$$

Ply into (1): $W^{*}=\frac{2 m}{2 p_{w}+p_{H}}$ bundle

Perfect complements: algebraic argument
For the goverl porfeot complements utloy fration $u\left(x_{1}, x_{2}\right)=\min \left\{\alpha x_{1}, \beta x_{2}\right\}$
\Rightarrow Marshallion dennand

$$
\begin{aligned}
& x_{1}^{*}=\beta\left(\frac{m}{\beta p_{1}+\alpha p_{2}}\right) \\
& x_{2}^{*}=\alpha\left(\frac{m}{\beta_{1}+\alpha p_{2}}\right)
\end{aligned}
$$

Interpretetios: think of a "compend gard" where one unt of the "bike" consiss of β units of goal 1 and α units of goan 2. ts effetrue "parice" s $\beta_{p_{1}} t \alpha_{p_{2}}$ per mit.
this means β conis of x_{1}
for every α units of x_{2}
Carefu!!" NOT α un,s of x_{1}
for cery β unts of x_{2}
ewn thagh arkithe to read the atili, furctas theot way

Perfect complements: algebraic argument
The $\frac{m}{\beta_{p_{1}}+\alpha p_{2}}$ is the "maximum" number
\Rightarrow of "bikes" you can by with budget m.
α and β defomin whins shore is pent on good 2 is. good 1
Amount of
compurd goad: $\frac{m}{\beta p_{1}+\alpha p_{2}}$
Ament of of bills $x \nRightarrow$ of hadubors $\underset{\text { good } 1}{\text { handlers })}=\frac{m}{\beta_{p_{1}}+\alpha p_{2}} \times \alpha$

$$
\begin{aligned}
& \text { Ament of } \\
& \begin{array}{l}
\text { Armonk } 2 \\
\text { god } 2 \\
\text { (where) }
\end{array}=\text { of lives } \times \# \text { of dor back } \\
& \text { (uncels) }=\frac{p}{B p_{1}+\alpha p_{2}} \times \beta
\end{aligned}
$$

Perfect substitutes

- Possible examples
- Organic vs. non-organic bananas
- Diet Coke vs. Coke Zero
- "I am always indifferent between a units of good 2 and b units of good 1"
- What does "always" mean here?

16 oz ans of Dies coke men Coll of any kind as

regaralloss of how much of caen good I'm consuming, the rote at which I'd pretor are to the other is th same, a constant.

Perfect substitutes

$$
\begin{aligned}
\operatorname{MRS}\left(x_{1}, x_{2}\right) & =\frac{\frac{\partial u\left(x_{1}, x_{2}\right)}{\partial x_{1}}}{\frac{\partial u\left(x_{1}, x_{2}\right)}{\partial x_{2}}} \\
& =\frac{M U_{1}\left(x_{1}, x_{2}\right)}{M U_{2}\left(x_{1}, x_{2}\right)}=k
\end{aligned}
$$

- If the MRS is constant, then what form does the utility function have? lout extra, dost need to learn this!

Why? Suppose rot. Then at least ore of MU, and MN 2 is a function of x_{1} and bo x_{2}
(1) If one is a constant and the other a function $f\left(x_{1}, k_{2}\right)$, then their ratio carnot be a constant.
(2) If both are functions of x_{1} and for x_{2}, then their ratio con only be constant if they are linear functions of ore cather:

$$
M V_{1}\left(x_{1}, x_{2}\right)=K M V_{2}\left(x_{1}, x_{2}\right)
$$

and

$$
\begin{aligned}
\int M V_{1}\left(x_{1}, x_{2}\right) d x_{1} & =\int M U_{2}\left(x_{1}, x_{2}\right) d x_{2} \\
& =\int \frac{1}{k} M U_{1}\left(x_{1}, x_{2}\right) d x_{2}
\end{aligned}
$$ goods 1 and 2 are the same good.

Perfect substitutes
Recall Pset 2: if $\operatorname{MRS}\left(x_{1}, x_{2}\right)>$ price ratio, thes optrol to reallocate dudjet togrod 1

$$
\begin{aligned}
& \frac{M U_{1}}{M U_{2}} \text { vs. } \frac{p_{1}}{p_{2}} \\
\Leftrightarrow & \frac{M U_{1}}{p_{1}} \text { vs. } \frac{M U_{2}}{p_{2}}
\end{aligned}
$$

, thes budjet allocetion is optiond (for intenw soktions)
With perfeat substitutes, all four numbers

- If LHS > RHS, then it is utility-increasing to spend more on good 1
- If LHS < RHS, spend more on good 2
- If LHS = RHS, then the consumer is indifferent
here are constant!
So if LHS $>$ RHS, true for all valwes of $\left(x_{1}, x_{2}\right)$

$$
\leq \swarrow
$$

corner solutions we associde with concourty the sore two conur solutivo PLUS
nitener sontions he ass $]$ nteder soltions he associcte w/ convexty Perteat abstitutes peferenes on both conave od convar! 19

Perfect substitutes

Recall Pset 2:

$$
\begin{aligned}
& \frac{M U_{1}}{M U_{2}} \text { vs. } \frac{p_{1}}{p_{2}} \\
\Leftrightarrow & \frac{M U_{1}}{p_{1}} \text { vs. } \frac{M U_{2}}{p_{2}}
\end{aligned}
$$

The three cases visualized

1. $\operatorname{MRS} \equiv \frac{\alpha}{\beta}>$ price ratio
2. $\operatorname{MRS} \equiv \frac{\alpha}{\beta}<$ price ratio
3. $\operatorname{MRS} \equiv \frac{\alpha}{\beta}<$ price ratio
4.

Perfect substitutes and the demand function
Three cases so we wade or Marshalling dement as a piecewise function

Optimal bundle depends on relative prices

- Prices p_{1}, p_{2} and budget m
- Preferences:

$$
u\left(x_{1}, x_{2}\right)=\alpha x_{1}+\beta x_{2}+c
$$

- Then what does the demand function depend on?

$$
x_{1}^{*}(p, m)=\left\{\begin{array}{c}
\frac{m}{p_{1}} \text { if } \frac{\alpha}{\beta}>\frac{p_{1}}{p_{2}} \\
\text { any value }\left[0, \frac{m}{p_{1}}\right] \text { if } \frac{\alpha}{\beta}=\frac{p_{1}}{p_{2}} \\
0 \quad \text { if } \frac{\alpha}{\beta}<\frac{p_{1}}{p_{2}}
\end{array}\right.
$$

$$
x_{2}^{*}(p, m)=\left\{\begin{array}{cl}
0 & \text { if } \frac{\alpha}{\beta}>\frac{P_{1}}{P_{2}} \\
\text { any vole }\left[0, \frac{m}{p_{2}}\right] & \text { if } \frac{\alpha}{\beta}=\frac{p_{1}}{P_{2}} \\
\frac{m}{P_{2}} & \text { if } \frac{\alpha}{\beta}<\frac{P_{1}}{P_{2}}
\end{array}\right.
$$

Quasilinear preferences

- Suppose indifference curves are just vertical translations of one another
- It then follows that indifference curves have the form

$$
x_{2}=k-v\left(x_{1}\right)
$$

- k is a constant unique to each level of utility
- some function v of x_{1} giving the shape displayed here
- Intuitive to index utility by $k \Rightarrow x_{2}-v\left(x_{1}\right)$ is essntion
- "Quasilinear": linear in one good, maybe not the other
the utility function nerved as k

U if $v\left(x_{1}\right)$ is liner, we get as special ace of quasilner preterones

Quasilinear preferences
From $B C: x_{2}=\frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1}$
Subinto of and transform nto uncenstraned optriniation problen

$$
\max _{\left\{x_{1}, x_{2}\right\}} v\left(x_{1}\right)+x_{2} \text { (OF) }
$$

$$
\max _{\left\{x_{1}\right\}}=v\left(x_{1}\right)+\frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1}
$$

Tale frostorder condition (wit x_{1} :
s.t. $p_{1} x_{1}+p_{2} x_{2} \leq m(B C)$

$$
\begin{aligned}
& F O c_{x_{1}}: 0=v^{\prime}\left(x_{1}\right)+0 \frac{-p_{1}}{p_{2}} \\
& \Rightarrow v^{\prime}\left(x_{1}\right)=\frac{p_{1}}{p_{2}}
\end{aligned}
$$

Nore that income n dow ant affect thasontin!

For a gien form of the utility fundion, this will alhow yos to derve the Morshalion demend fonations

Quasilinear preferences: " , "zero income effect"
Inverse demand footy from rearing th $F O C$ in peentas sale

$$
p_{1}\left(x_{1}\right)=p_{2} v^{\prime}\left(x_{1}\right)
$$

price as a factors of gratian

- Suppose the tangency condition is met at some interior bundle $\left(x_{1}^{*}, x_{2}^{*}\right)$
- What happens if we Shift the budget line?
- What if we were to trace the optimal bundle as a function of income?

Since m drops att, the bund l that satisfies th tangery conditions is indepadert of m.

This line trues option allocation
as incan nureces the option ament of x_{1} stays the som!

$$
\left(x_{1}^{*}, x_{L}^{*}+\frac{\Delta m}{p_{2}}\right) \text {. }
$$

We say the is zero moon

Pset 3: what hapress har?
our solutions ($\left.x_{1}^{*}, x_{1}^{*}+\frac{\Delta m}{p_{2}}\right)$ ong gue us the brath that sotisfies the targeny condition. What about who we nit cornos?
INT: Thok abat the preceaise solutions for porfect rbostobes!

Quasilinear preferences: :.,. "zero income effect"

- How can optimal demand for good 1 be independent of income if at income 0 , we can't afford any of either good and optimal demand must be zero?
- An example: starting at zero income, there is a range of subsistence incomes where you spend any earnings you have on essentials like toothpaste
- But after a certain point, increases in income aren't likely to make you use more toothpaste and you might spend the "excess" earnings on something like vacation or recreation
- Pset 3: clearly we have to consider multiple cases corresponding to interior and corner solutions. What is the relevant threshold income level at which point the zero income effect kicks in?
income offer cone and Bonus quastios: What dos the complete Engel Cone look like?

Time permitting or problems to work through on your own

Given preferences $u(x)=\min \left\{\alpha x_{1}, \beta x_{2}\right\}$

1. Solve for Marshallian demands
2. Solve for indirect utility
3. Verify Roy's identity for good 1
4. Solve for Hicksian demands and the expenditure function

Given preferences $u(x)=\min \left\{\alpha x_{1}, \beta x_{2}\right\}$

1. Solve for Marshallian demands
2. Solve for indirect utility
3. Verify Roy's identity for good 1
4. Solve for Hicksian demands and the expenditure function
