ECON-UN 3211 - Intermediate Microeconomics

Recitation 1: The consumer's optimization problem
Budget sets, utility functions, and the optimality condition

Matthew Alampay Davis
September 16, 2022

The budget line

The budget line

- Income m
- Quantities x_{1} and x_{2}
- Prices p_{1} and p_{2}
- Budget set

$$
x_{1} p_{1}+x_{2} p_{2} \leq m
$$

- Budget line

$$
\begin{aligned}
m & =x_{1} p_{1}+x_{2} p_{2} \\
\Rightarrow x_{2} & =\frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1}
\end{aligned}
$$

The budget line: changes in income

- Income $m \rightarrow m+\Delta m$
- Quantities x_{1} and x_{2}
- Prices p_{1} and p_{2}
- Budget set

$$
x_{1} p_{1}+x_{2} p_{2} \leq m+\Delta m
$$

- Budget line

$$
\begin{aligned}
m+\Delta m & =x_{1} p_{1}+x_{2} p_{2} \\
\Rightarrow x_{2} & =\frac{m+\Delta m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1}
\end{aligned}
$$

The budget line: changes in prices

- Income m
- Quantities x_{1} and x_{2}
- Prices $p_{1} \rightarrow p_{1}+d_{1}$ and

$$
p_{2} \rightarrow p_{2}+d_{2}
$$

- Budget set

$$
x_{1}\left(p_{1}+d_{1}\right)+x_{2}\left(p_{2}+d_{2}\right) \leq m
$$

- Budget line

$$
\begin{aligned}
m & =x_{1}\left(p_{1}+d_{1}\right)+x_{2}\left(p_{2}+d_{2}\right) \\
\Rightarrow x_{2} & =\frac{m}{p_{2}+d_{2}}-\frac{p_{1}+d_{1}}{p_{2}+d_{2}} x_{1}
\end{aligned}
$$

Representing preferences

Preferences and utility representations

- Utility function
- Input: quantity x or bundle ($\left.x_{1}, x_{2}, \ldots\right)$
- Output: a number
- A utility function represents preferences if $u(x)>u(y)$ whenever x is preferred to y
- Utility representations of preferences are ordinal not cardinal: how much larger $u(x)$ is than $u(y)$ is meaningless

Consumer pretor A to B and B to C

$$
\Rightarrow A \text { to } C
$$

Bunche	$u(x)$	$v(x)=2 u(x)$ $v(x)$	$w(x)=v(x)$ $w(x)^{+3000}$
C	5	10	3010
B	10	20	3020
A	300	600	3600

Preferences are invariant to (positive) monotonic transformations of utility

- If $u(x)$ is a valid representation, then so is $v(x)$ if $v(x)=f(u(x))$ for a monotonic function f
- Adding/subtracting
- Multiplying/dividing
- Exponentiating
- Taking logs

Marginal utility and marginal rate of substitution

- Marginal utility: the additional utility derived from consuming one additional unit
- Marginal rate of substitution: rate at which a consumer can give up some amount of good 2 in exchange for good 1 while maintaining the same level of utility (slope of the indifference curve)

$$
\begin{aligned}
& M U_{1}=\frac{\partial u\left(x_{1}, x_{2}\right)}{\partial x_{1}} \quad M V_{2}=\frac{\partial u\left(x_{1}, x_{2}\right)}{\partial x_{2}} \\
& \left(x_{1}, x_{2}\right) \quad\left(x_{1}+d x_{1}, x_{2}+d x_{2}\right)
\end{aligned}
$$

$$
\text { Bundt } 1
$$

Bunch 2

$$
\begin{aligned}
& d u=M U_{1} \times d x_{1}+M U_{2} \times d x_{2}=0 \\
& \Rightarrow M U_{1} d x_{1}=-M V_{2} d x_{2} \\
& \Rightarrow \frac{d x_{1}}{d x_{2}}=-\frac{M U_{1}}{M U_{2}}
\end{aligned}
$$

MRS is invariant to to (positive) monotonic transformations of utility

- Suppose we have $v\left(x_{1}, x_{2}\right)=f\left(u\left(x_{1}, x_{2}\right)\right)$ for monotonic function f
- If MRS is the same, then the shape of the indifference curves are the same
- Thus preferences have infinite utility function representations but uniquely shaped indifference curves

Example: Cobb-Douglas utility functions

$$
\begin{array}{rlrl}
M V_{1} & =\frac{c}{x_{1}} \quad M V_{2}=\frac{d}{x_{2}} & M R S_{n}=-\frac{M V_{1}}{M V_{2}} & =\frac{-\left(c^{c} / x_{1}\right)}{\left(d / x_{2}\right)}=-\frac{c}{d} \times \frac{x_{2}}{x_{1}} \\
u\left(x_{1}, x_{2}\right) & =c \log x_{1}+d \log x_{2} \\
v\left(x_{1}, x_{2}\right) & =\exp \left(u\left(x_{1}, x_{2}\right)\right) \\
& =\exp \left(c \log x_{1}+d \log x_{2}\right) \\
& =\exp \left(\log x_{1}^{c}+\log x_{2}^{d}\right) \\
& =x_{1}^{c} x_{2}^{d} \\
M V_{1} & =c x_{1}^{c-1} x_{2}^{d} & =\frac{-\left(c x_{1}^{c-1}\right)\left(x_{2}^{d}\right)}{\left(d x_{1}^{c}\right)\left(x_{2}^{d-1}\right)} \\
M V_{2} & =d x_{1}^{c} x_{2}^{d-1}
\end{array}
$$

Elements

The elements of an optimization problem

In general:

1. Objective function
2. Choice variables
3. Constraint

$$
\left\{x_{1}, x_{2}\right\}
$$

$$
\text { s.t. } x_{1} p_{1}+x_{2} p_{2} \leq m
$$

The tangency condition

The tangency condition: greatest indifference curve tangent to the budget line
indifference ane that's target to the bulges line

$$
M R S=\frac{p_{1}}{p_{2}}
$$

The tangency condition

Exceptions:

- Intersection at a kink
- Intersection at bundles at ≤ 0 quantities

Ruling these out:

- Smooth indifference curves (differentiable utility functions)
- Restrict to interior optima Then the tangency condition is NECESSARY for optimality

The tangency condition

What about concave preferences?

The tangency condition

Assumptions for "well-behaved" preferences

1. Monotonocity: more of any good gives more utility
2. Convexity

Then the tangency condition is NECESSARY AND SUFFICIENT for optimality

- But: not necessarily unique: for that, need strict convexity

The tangency condition: in economic terms

- Slope of the indifference curve = slope of the budget line (i.e., the price ratio)
- MRS: the amount of additional good 2 that would deliver the same utility as another unit of good 1
- Slope of budget line: the rate at which the market relatively values good 2 to good 1
-What if these were not equal?

Deriving the demand functions

Deriving a demand function: intuition

- (Exogenously) given economic environment

1. Prices p_{1} and p_{2}
2. Budget m
3. Preferences $u\left(x_{1}, x_{2}\right)$

- We want functions $x_{1}^{*}\left(p_{1}, p_{2}, m\right)$ and $x_{2}^{*}\left(p_{1}, p_{2}, m\right)$ that give us the optimal bundle $\left(x_{1}^{*}\left(p_{1}, p_{2}, m\right), x_{2}^{*}\left(p_{1}, p_{2}, m\right)\right)$

Deriving a demand function: intuition

- To do this, we compute "first-order" conditions for optimality
. "First-order" because they entail first derivatives: of the indifference curve (MRS) and of the budget line (price ratio)
- Condition 1: the budget constraint must bind
- Condition 2: the slope of the indifference curve equals the slope of the budget line

$$
\begin{aligned}
M R S & =\text { Slope of budget line (times negative one) } \\
\Leftrightarrow \frac{M U_{1}}{M U_{2}} & =\text { Price ratio } \\
\Leftrightarrow \frac{\frac{\partial u\left(x_{1}, x_{2}\right)}{\partial x_{1}}}{\frac{\partial u\left(x_{1} x_{2}\right)}{\partial x_{2}}} & =\frac{p_{1}}{p_{2}}
\end{aligned}
$$

- Two conditions give us two equations in two unknowns x_{1} and x_{2} : the solution is a unique bundle unless they are linearly dependent

Deriving a demand function: intuition

$$
\begin{gathered}
\max _{\left\{x_{1}, x_{2}\right\}} u\left(x_{1}, x_{2}\right) \\
\text { s.t. } \\
x_{1} p_{1}+x_{2} p_{2} \leq m
\end{gathered}
$$

Two main ways of solving this constrained optimization problem

1. Convert to an unconstrained optimization problem

- Take the budget line equation and express x_{1} in terms of x_{2} (or vice versa)
- Substitute into the objective function
- Solve like an optimization problem with one choice variable and no constraint

$$
\max _{\left\{x_{1}\right\}} u\left(x_{1}\right)
$$

- Back out the other quantity by substituting the resultant x_{1} into the budget constraint

2. The method of Lagrange multipliers (not covered in our treatment)

Example: Cobb-Douglas preferences

$$
\begin{aligned}
& c \log _{x_{1}}+d \log \operatorname{cog}_{2} \\
& \max x_{1}^{c} a_{2}^{d} \quad[\text { we con timer logs of the } \\
& \text { objectre function to make the } \\
& \text { math easier] } \\
& =\max _{x_{1}, x_{2}} c \log x 1+d \log ^{x_{2}} \sum^{\text {subtitive } x_{2}} \\
& =\max _{x_{1}}^{{ }_{\downarrow}^{c \log x,}} \underset{\downarrow}{ }+d \log \left[\frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1}\right] \\
& \text { * } F O C_{x_{1}}: \frac{C^{\downarrow}}{x_{1}}+\frac{d\left[-\frac{p_{1}}{p_{2}}\right] \quad \begin{array}{l}
\text { [apply } 109 \\
\text { denwotive tee }
\end{array}}{\left.\frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x \quad \text { see notes }\right]} \\
& \text { set. } x_{1} p_{1}+x_{2} p_{2} \leq m \\
& \Rightarrow x_{1} p_{1}+x_{2} p_{2}=m \\
& \Rightarrow \frac{c}{x_{1}}=\frac{d p_{1}}{m-p_{1} x_{1}} \Rightarrow c m-c p_{1} x_{1}=d p_{1} x_{1} \\
& \Rightarrow x_{1}=\frac{m}{p_{1}}\left[\frac{c}{c+d}\right]
\end{aligned}
$$

Third method : system of two equation
Preferences: (1) Budget constraint binds: $m=x_{1} p_{1}+x_{2} p_{2}$

$$
u\left(x_{1}, x_{2}\right)=x_{1}^{c} x_{2}^{d}
$$

(2) Tangency condition: $\frac{M V_{1}}{M V_{L}}=\frac{P_{1}}{P_{2}}$

So the problem is:

$$
\max _{\left\{x_{1}, x_{2}\right\}} x_{1}^{c} x_{2}^{d}
$$

Lat $v=\log \left(u\left(x_{1}, x_{2}\right)\right)$ for convenience: $v\left(x_{1}, x_{2}\right)=c \log x_{1}+d \log x_{2}$

$$
\frac{M V_{1}}{M V_{2}}=\frac{c / x_{1}}{d / x_{2}}=\frac{p_{1}}{p_{2}} \Leftrightarrow x_{2}=\frac{p_{1}}{p_{2}} \frac{d x_{1}}{c}
$$

s.t. $x_{1} p_{1}+x_{2} p_{2} \leq m$ Solve as simultaneas equation: plug (2) no (1)

$$
\begin{aligned}
m & =x_{1} p_{1}+p_{2}\left[\frac{p_{1}}{p_{2}} \frac{d x_{1}}{c}\right] \\
& =x_{1} p_{1}+p_{1} \frac{d x_{1}}{c}=x_{1} p_{1}\left(1+\frac{d}{v}\right) \\
\Rightarrow x_{1} & =\frac{m}{p_{1}\left(1+\frac{d}{c}\right)}=\frac{m c}{p_{1}(c+d)}=\frac{m}{p_{1}} \cdot \frac{c}{c+d}
\end{aligned}
$$

Example: Cobb-Douglas preferences
In either method, con then solve for x_{2} to get the son solutes

Preferences:

$$
u\left(x_{1}, x_{2}\right)=x_{1}^{c} x_{2}^{d}
$$

So the problem is:

$$
\max _{\left\{x_{1}, x_{2}\right\}} x_{1}^{c} x_{2}^{d}
$$

s.t. $x_{1} p_{1}+x_{2} p_{2} \leq m$

$$
\begin{aligned}
& x_{1}^{*}=\left(\frac{m}{p_{1}}\right) \frac{c}{c+d} \text { and } x_{2}^{*}=\left(\frac{n}{p_{2}}\right) \cdot \underbrace{\frac{d}{c+d}} \\
& \text { if gout spent yo utility functarp } \\
& \text { entire iran ny bongos } 1
\end{aligned}
$$

amount of good 2
if goo spent your
entire incan any on goo 2

Key ports for Cobb-Doytas:

- the relative size of c vs. d deterring how much of your budget gos'll speed on good 1 us-gool 2
- the prius p_{1} and p_{2} do not affect the chare of your budget gary to geed 1! Only affects how mary units you con buy with that share!

