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1 Basics and notation

• A function f is a rule or mapping that takes in input, say
x, and produces a unique output f(x). This input can be
single-dimensional or multi-dimensional, say x1, x2, ..., xn; in
the latter case, we can say we are evaluating the function f

for n variables evaluated at values x1, x2, ..., xn to obtain the
output f(x1, x2, ..., xn).

• Throughout this course, we’ll be making use of functions to
describe relationships of the following variety:

y = f(x1, x2, ..., xn) (1)

In this case, we can say, “the dependent variable y is a func-
tion of the independent variables x1, x2, ..., xn.” This termi-
nology captures the direction of dependence between the
variables: the output is determined by the input. In the n = 2

case, y is determined by x1 and x2. This is what we mean
when we say “y is a function of x1 and x2”.

• Types of functions (informal definitions)

– Continuous: a function that can be drawn without lifting
a pencil from the paper

– Smooth: a function that has no kinks or corners.
Slightly more formally, a function whose derivatives are
continuous and without holes.

– Monotonic: a function that is always increasing or al-
ways decreasing with respect to its inputs. A function
can be monotonically increasing with respect to one in-
put and monotonically decreasing with respect to an-
other. For example, the price of a second-hand car may
be monotonically increasing with respect to its size but
monotonically decreasing with respect to its age.

– Inverse: if f is a function of input x, g is the inverse
function of f if g(f(x)) = x. For example, if f(x) = x2

and g(x) =
√
x, then g(f(x)) = g(x2) =

√
x2 = |x| and

so we say g is the inverse of f when x ≥ 0 because g

“undoes” what f does to x.

• As an example, we might think of y as the quantity of cars
produced, L as the quantity of labor used in production, and
K as the quantity of capital used in production. This two-
dimensional function of the independent variables L and K

thus describes a very basic production function where the
number of cars a firm produces is determined by the quan-
tity of the two inputs used.

• The above function f is unspecified; we have not given it
a specific form. A simple production function specification

used in economics is the two-input Cobb-Douglas produc-
tion function with constant returns to scale:

y = ALαK1−α (2)

for fixed constants A > 0 and 0 < α < 1, whose interpreta-
tions we’ll investigate later int his course.

• Returning to the first bullet point, it’s important to empha-
size the word “unique” in our definition. A bundle of in-
puts (x1, ..., xn) delivers only one—i.e., “unique”—value of
f(x1, ..., xn). In the car production example, this would be
like saying using 5 units of L and 6 units of K as inputs in
production enables the production of f(5, 6) cars, no more
and no less.

• What is not necessarily unique is the set of inputs which can
deliver the same output. In fact, microeconomics work is very
interested in the set of inputs that deliver the same output: if f
were a utility function whose inputs are a bundle of goods and
whose output is the amount of utility it grants a consumer,
then plotting the set of bundles that deliver the exact same
utility traces out what we call an indifference curve. Likewise,
if f were an expenditure function whose inputs are a bundle
of goods the consumer can spend on and whose output is
the amount spent on the given bundle, then plotting the set
of bundles that exhausts their budget exactly will trace out
what we call a budget constraint.

2 Derivatives of common functions

dc

dx
= 0

dx

dx
= 1

dx2

dx
= 2x

d

dx
ex = ex

d

dx
ln(x) =

1

x
d

dx
loga(x) =

1

x ln(a)

(3)

3 Derivative rules

• Power rule and polynomials: daxn

dx
= naxn−1

Example:

d

dx
(4x3 + 3x2 + 8x+ 5) = 12x2 + 6x+ 8 (4)

• Product rule: d

dx
(f(x)g(x)) = f(x)g′(x) + f ′(x)g(x)
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Example:

f(x) = x

⇒ f ′(x) = 1

g(x) = ln(x)

⇒ g′(x) =
1

x
d

dx
[f(x)g(x)] =

d

dx
x ln(x)

= x
1

x
+ 1× ln(x)

= 1 + ln(x)

(5)

• Quotient rule: d

dx

(
f(x)

g(x)

)
=

f ′(x)g(x)− g′(x)f(x)

g(x)2

Example:

f(x) = x

⇒ f ′(x) = 1

g(x) = ln(x)

⇒ g′(x) =
1

x
d

dx

(
f(x)

g(x)

)
=

d

dx

(
x

ln(x)

)
=

1× ln(x)− 1
x
× x

ln(x)2

=
1

ln(x)
− 1

ln(x)2

(6)

• Chain rule: d

dx
[f(g(x))] = f ′(g(x))× g′(x)

Example:

f(x) = x8

⇒ f ′(x) = 8x6

g(x) = 3x+ 2

⇒ g′(x) = 3

d

dx
[f(g(x))] = f ′(g(x))× g′(x)

= 8(3x+ 2)7 × 3

= 24(3x+ 2)7

(7)

• Higher-order derivatives

– Second derivatives are straightforward: simply take the
derivative of the original function and then take that
derivative’s derivative. If the first derivative is the rate of
change of a function with respect to an input, the sec-
ond derivative is thre ate of change of the rate of change
of the function with respect to that input.

– For example, if t is time and f(t) gives the distance trav-
eled by a car at time, then the first derivative f ′(t) gives
the rate of change of distance traveled as a function of
time, i.e., its speed. Then the second derivative f ′′(t)

gives the rate of change of the speed of the car, i.e., its
acceleration.

– First derivatives are useful for identifying stationary
points, values of x or t or any other input at which point

the function either stops increasing or stops decreas-
ing. For our purposes, setting first derivatives equal
to zero—finding first-order conditions—will be how we
identify minimum and maximum points.

– Second derivatives are useful for characterizing station-
ary points. The first-order condition only tells us where
the first derivative is equal to zero, but it does not tell
us whether those points represent a local minimum or
a local maximum. The second derivative does this for
us: if the second derivative is positive at a stationary
point, then we know it is a local minimum. If the sec-
ond derivative is negative at a stationary point, then we
know it is a local maximum.

• Partial derivatives

– When f is a function of multiple inputs or variables, then
differentiation entails calculating partial derivatives with
respect to each variable, holding the other ones con-
stant. For example, suppose our function of interest is
f(x1, x2) = x2 + ln(4x2). Then we can take partial
derivatives with respect to either x1 or x2 as follows:

∂

∂x1
f(x1, x2) =

∂

∂x1
(x2

1 ln(4x2))

= 2x1 ln(4x2))

∂

∂x1
f(x1, x2) =

∂

∂x2
(x2

1 ln(4x2))

= 4x2
1

1

4x2
=

x2
1

x2

(8)

– Higher-order partial derivatives work analogously to the
single-variable case other than we can take the par-
tial derivative a multivariate function with respect to one
variable, then take the partial derivative of that partial
derivative with respect to another:

f(x, y) = 4x3y2

∂

∂x
f(x, y) = 12x2y2

∂2

∂x∂y
f(x, y) = 24x2y

∂

∂y
f(x, y) = 8x3y

∂2

∂y∂x
f(x, y) = 24x2y

(9)

– Note it is an identity that ∂2

∂x∂y
f(x, y) =

∂2

∂y∂x
f(x, y).

That is to say, it is always true by definition.

4 Unconstrained optimization

• An optimization problem generally has the following compo-
nents:

1. The objective function: the function the economic
agent wants to optimize. For example, a consumer
might want to maximize their utility or a producer might
want to minimize their costs:

maxU(x1, x2) (10)
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2. The choice variables: this is the set of input variables
that the economic agent is able to choose values of in
order to optimize their objective function. A consumer
seeking to maximize their utility may be doing so with
respect to consumption of goods x1 and x2. The opti-
mization problem is then to maximize utility with respect
to x1 and x2:

max
{x1,x1}

U(x1, x2) (11)

3. The constraints, if they exist, place restrictions on the
values the choice variables can take. For example, in a
standard model where consuming more goods always
gives more utility, we need restrictions on how many
goods can be consumed in order for the optimization
problem to be economically interesting. These often
take the form of budget constraints where the consumer
has a maximum budget B and the goods are priced p1

and p2. Then the optimization problem becomes

max
{x1,x1}

U(x1, x2)

s.t. p1x1 + p2x2 ≤ B

(12)

where s.t. can be read as “subject to” or “such that”

• We’ll be primarily concerned with constrained optimization
problems throughout the semester, but let’s limit today’s dis-
cussion to the unconstrained case using objective functions
that are non-monotonic

• Solving an optimization problem usually involves the follow-
ing steps:

1. Writing the problem: identifying the objective function,
the type of optimization we want (maximization or min-
imization), the choice variables, and if applicable, the
constraints

2. Taking the first-order condition with respect to each
choice variable: set the first-order conditions equal to
zero and solve for the relevant choice variable

3. Checking the second-order conditions: verify
through the second derivative that the stationary point
identified by the first-order condition is of the type we
want (a maximum or minimum if our objective is to max-
imize or minimize the objective function)

• An example in one dimension: A consumer seeks to maxi-
mize their utility from consumption of good x. If their utility
function is given by u(x) = −(x − 2)2, what is the optimal
amount of x for the consumer?

1. Writing the problem:

max
x

−(x− 2)2 (13)

2. Taking the first-order condition:

0 =
d

dx

(
−(x− 2)2

)
= −2(x− 2)

⇒ x = 2

(14)

3. Checking the second-order condition:

d2

dx2

(
−(x− 2)2

)
=

d

dx
(−2(x− 2))

= −2

(15)

This is negative when x = 2 and so the stationary point
identified by the first-order condition (x = 2) must be a
local maximum, just as we wanted

• When we are optimizing in multiple dimensions, we’ll have
to take the first-order condition with respect to all choice vari-
ables. This entails taking partial derivatives and setting them
equal to 0 with respect to each choice variable and then solv-
ing for the choice variables. Each first-order condition gives a
system of equations which can then be solved jointly. So for
example, imagine the utility function in the previous example
was instead u(x1, x2) = −3(x2 − 1)2 − x2

1

1. Writing the problem:

max
{x1,x2}

−3(x2 − 1)2 − x2
1 (16)

2. Taking first-order conditions:

0 =
∂

∂x1

[
−3(x2 − 1)2 − x2

1

]
= −2x1

⇒ x∗
1 = 0

0 =
∂

∂x2

[
−3(x2 − 1)2 − x2

1

]
= −6(x2 − 1)

⇒ x∗
2 = 1

(17)

3. We can analogously verify that the second derivatives
of the objective function with respect to the two choice
variables satisfy the condition for the bundle (x∗

1, x
∗
2) to

be a local maximum
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