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Practice Problem 1: The St. Louis Model

A model that attracted quite a bit of interest in macroeconomics in the 1970s was the St. Louis model.
The underlying idea was to calculate fiscal and monetary policy impact and long-run cumulative dynamic
multipliers, by relating real output (growth) to real government expenditure (growth) and real money supply
(growth). The assumption was that both government expenditures and the money supply were exogenous.

In order to investigate the effect of a fiscal and monetary policies on output, you want to estimate a St. Louis
type model using your quarterly data (i.e., make sure to use HAC standard errors) and report your results.

(a) and (b) Download FRED Data

Visit the Federal Reserve Bank of St. Louis where you have access to the FRED and down-
load the data for the required three variables (i.e., real GDP (GDPC1), real money supply
(M2REAL), and real government expenditure (GCEC1)). Don’t need to learn this, but a conve-
nient way of doing this is using the Quandl package to download the data directly

Quandl.api_key('xHu2y3xExQ6bGkGqcYEi') # This is my personal API key
gdp <- Quandl('FRED/GDPC1')
m2 <- Quandl('FRED/M2REAL')
gov <- Quandl('FRED/GCEC1')

head(gdp)

## Date Value
## 1 2021-10-01 19805.96
## 2 2021-07-01 19478.89
## 3 2021-04-01 19368.31
## 4 2021-01-01 19055.65
## 5 2020-10-01 18767.78
## 6 2020-07-01 18560.77

head(m2)

## Date Value
## 1 2021-12-01 7724.4
## 2 2021-11-01 7696.6
## 3 2021-10-01 7660.0
## 4 2021-09-01 7657.1
## 5 2021-08-01 7629.0
## 6 2021-07-01 7560.6
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head(gov)

## Date Value
## 1 2021-10-01 3356.829
## 2 2021-07-01 3381.574
## 3 2021-04-01 3373.765
## 4 2021-01-01 3390.921
## 5 2020-10-01 3356.030
## 6 2020-07-01 3360.238

The real money supply m2 is available on a monthly frequency basis: don’t forget to convert
it into a quarterly frequency variable to match it with the other two variables. Hint: Is m2 a
stock or flow variable? Although, you may take the last month of each quarter or the three-
month average as your quarterly value, here use the first month of each quarter. Since M2 is
a stock variable, you can take the value of this series corresponding to the first month of each quarter to get
the quarterly values of this variable.

fred <- left_join(gdp, m2, by = 'Date') %>%
left_join(gov, by = 'Date')

head(fred)

## Date Value.x Value.y Value
## 1 2021-10-01 19805.96 7660.0 3356.829
## 2 2021-07-01 19478.89 7560.6 3381.574
## 3 2021-04-01 19368.31 7550.3 3373.765
## 4 2021-01-01 19055.65 7396.4 3390.921
## 5 2020-10-01 18767.78 7201.0 3356.030
## 6 2020-07-01 18560.77 7084.5 3360.238

fred %<>% rename(gdp = Value.x,
m2 = Value.y,
gov = Value)

head(fred)

## Date gdp m2 gov
## 1 2021-10-01 19805.96 7660.0 3356.829
## 2 2021-07-01 19478.89 7560.6 3381.574
## 3 2021-04-01 19368.31 7550.3 3373.765
## 4 2021-01-01 19055.65 7396.4 3390.921
## 5 2020-10-01 18767.78 7201.0 3356.030
## 6 2020-07-01 18560.77 7084.5 3360.238

Notice that our time variable, Date, is not just a number variable but a ‘Date’ variable.

The sample period should be from first quarter of 1960 to the fourth quarter of 2019 (i.e.,
1960q1 to 2019q4). Quarters in this dataset are defined by the first day of the first month in that quarter,
i.e. the 1st of January, April, July, and October
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fred %<>% filter(Date >= '1960-01-01') %>%
filter(Date <= '2019-12-31')

As a sanity check, let’s plot one of these variables as a line graph:

ggplot(fred, aes(x = Date, y = m2)) +
theme_bw() +
geom_line() +
xlab('Year') +
ylab('') +
ggtitle('Time series of M2 money supply, quarterly')
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We can also derive the autocorrelations for this series either as a plot of a corellogram. . .

acf(fred$m2,
na.action = na.pass) # ignore any missing data/gaps in the time series
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Or by displaying the estimated autocorrelations, say up to 15 lags:

acf(fred$m2,
na.action = na.exclude, # Ignore any missing data
lag.max = 15, # Number of lags to include
plot = FALSE)

##
## Autocorrelations of series ’fred$m2’, by lag
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12
## 1.000 0.981 0.962 0.944 0.925 0.906 0.887 0.868 0.849 0.830 0.810 0.791 0.771
## 13 14 15
## 0.752 0.734 0.715

Compute the growth rates of these three variables after you first transform them into natural
logarithm and name/label them ygrowth, mgrowth, and ggrowth For a variable Xt, we’ll compute
the growth rate xt using the following transformation:

xt = log(Xt) − log(Xt−1)

fred %<>% mutate(ygrowth = log(gdp)-lag(log(gdp)),
mgrowth = log(m2)-lag(log(m2)),
ggrowth = log(gov)-lag(log(gov)))
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(c) Estimate a distributed lag model of ygrowth on current-period mgrowth, the
effect of a monetary policy on current quarter’s output growth

(d) Estimate a distributed lag model of ygrowth on current-period ggrowth, the
effect of a fiscal policy on current quarter’s output growth

We’ll use our familiar feols package to estimate a series of distributed lag models. We’ll find it convenient to
use the same panel methods for time series, allowing us to use mostly the same commands we’ve used before.
This will require us to define our unit and and time variables (since fixest is intended for panel datasets).
Since time series are essentially just panel datasets with T time periods but only N = 1 units, let’s just
create a unit variable that takes on an arbitrary value for all observations:

fred %<>% mutate(unit = 'same')

This will also be necessary to make use of the other new component: new standard errors for time series
and panel datasets which are robust to both heteroskedasticity and autocorrelation (HAC). We call these
Newey-West (NW) standard errors and they are convenientliy calculated using the NW (m) function.

These standard errors require us to determine the appropriate lag truncation parameter m. This is a matter
of applying the rule-of-thumb formula from the textbook and rounding up:

m <- 0.75*nrow(fred)ˆ(1/3)
m

## [1] 4.660849

# Round up
m <- ceiling(m)
m

## [1] 5

Last note: we can of course use the same functions to estimate autoregressive models AR(p). In this case,
we do not want to use HAC standard errors and in addition, we’ll want to specify iid standard errors so we
don’t cluster standard errors

Now we can estimate the desired models:

mod.c <- feols(ygrowth ~ mgrowth, fred,
panel.id = c('unit', 'Date'),
vcov = NW(5))

## NOTE: 1 observation removed because of NA values (LHS: 1, RHS: 1).

mod.d <- feols(ygrowth ~ ggrowth, fred,
panel.id = c('unit', 'Date'),
vcov = NW(5))

## NOTE: 1 observation removed because of NA values (LHS: 1, RHS: 1).
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etable(mod.c, mod.d, markdown = T)

Dependent Variable: ygrowth
Model: (1) (2)
Variables
Constant -0.0066∗∗∗ -0.0064∗∗∗

(0.0008) (0.0007)
mgrowth 0.1135

(0.0781)
ggrowth 0.2148∗∗∗

(0.0520)
Fit statistics
Observations 239 239
R2 0.02722 0.06508
Adjusted R2 0.02312 0.06114

Newey-West (L=5) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

(e) Estimate a distributed lag model of ygrowth on current and next quarter’s
monetary policy on output growth

(f) Estimate a distributed lag model of ygrowth on current and next quarter’s
fiscal policy

To clarify the ambiguous language of the question, we are being asked to regress GDP growth between period
t and t+1 to changes to monetary/fiscal policy between periods t and t+1 and changes to monetary/fiscal
policy between periods t-1 and t.

Other than the standard errors, the other new component here is that our models are “dynamic”, meaning
they relate observations from different time periods to one another. Here, we’ll find it very convenient to
make use of the fixest package, which has functions l(), d(), and f(), which allow us to refer to lagged,
differenced, and lead terms in a regression formula without having to manually create new variables.

Estimating the above models:

mod.e <- feols(ygrowth ~ l(mgrowth, 0:1), fred,
panel.id = c('unit', 'Date'),
vcov = NW(5))

## NOTE: 2 observations removed because of NA values (LHS: 1, RHS: 2).

mod.f <- feols(ygrowth ~ l(ggrowth, 0:1),
fred,panel.id = c('unit', 'Date'),
vcov = NW(5))

## NOTE: 2 observations removed because of NA values (LHS: 1, RHS: 2).
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# Or combining them into one command
mods.ef <- feols(ygrowth ~ sw(l(mgrowth, 0:1),

l(ggrowth, 0:1)),
fred,panel.id = c('unit', 'Date'),
vcov = NW(5))

## NOTE: 1 observation removed because of NA values (LHS: 1).
## |-> this msg only concerns the variables common to all estimations

etable(mods.ef, markdown = T)

Dependent Variable: ygrowth
Model: (1) (2)
Variables
Constant -0.0058∗∗∗ -0.0067∗∗∗

(0.0008) (0.0006)
mgrowth 0.0165

(0.0629)
l(mgrowth,1) 0.2069∗∗∗

(0.0650)
ggrowth 0.2313∗∗∗

(0.0512)
l(ggrowth,1) -0.0622

(0.0454)
Fit statistics
Observations 238 238
R2 0.09842 0.07352
Adjusted R2 0.09075 0.06563

Newey-West (L=5) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notice the second argument in the lag function l() can take on a vector of numbers if we want to include
multiple lags (including lag 0 here).

What is the impact multiplier? Explain the meaning.

What is the cumulative multiplier? Explain the meaning.

(g) Estimate a distributed lag model of ygrowth on the change (i.e., the first
difference) in current and four lags of mgrowth and ggrowth (to mimic the
original St. Louis Equation)

# Create first-differenced versions of our regressors
fred %<>% mutate(diff.mgrowth = mgrowth-lag(mgrowth),

diff.ggrowth = ggrowth-lag(ggrowth))

mod.g <- feols(ygrowth ~ l(diff.mgrowth, 0:3) + l(mgrowth, 4) + l(diff.ggrowth, 0:3) + l(ggrowth, 4),
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fred, panel.id = c('unit', 'Date'),
vcov = NW(5))

## NOTE: 6 observations removed because of NA values (LHS: 1, RHS: 6).

etable(mod.g, markdown = T)

Dependent Variable: ygrowth
Model: (1)
Variables
Constant -0.0066∗∗∗

(0.0008)
diff.mgrowth 0.1687∗∗∗

(0.0485)
l(diff.mgrowth,1) 0.1505∗∗

(0.0591)
l(diff.mgrowth,2) 0.0415

(0.0744)
l(diff.mgrowth,3) -0.0163

(0.0627)
l(mgrowth,4) 0.1120∗∗

(0.0461)
diff.ggrowth -0.0158

(0.0524)
l(diff.ggrowth,1) -0.2164∗∗∗

(0.0640)
l(diff.ggrowth,2) -0.1462∗∗

(0.0657)
l(diff.ggrowth,3) -0.1472∗∗∗

(0.0488)
l(ggrowth,4) 0.0346

(0.0498)
Fit statistics
Observations 234
R2 0.18118
Adjusted R2 0.14446

Newey-West (L=5) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

(h) Assuming that money and government expenditures are exogenous, what do
the coefficients represent? Calculate the h-period cumulative dynamic multipli-
ers from these.

stl.est <- coeftable(mod.g)
stl.est

## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) -0.006592834 0.0007511044 -8.7775207 3.636806e-16
## diff.mgrowth 0.168727833 0.0484537481 3.4822452 5.936453e-04
## l(diff.mgrowth, 1) 0.150496282 0.0591134932 2.5458871 1.154554e-02
## l(diff.mgrowth, 2) 0.041516018 0.0744361091 0.5577403 5.775572e-01
## l(diff.mgrowth, 3) -0.016273219 0.0626708169 -0.2596618 7.953539e-01
## l(mgrowth, 4) 0.112017586 0.0461457772 2.4274721 1.596348e-02
## diff.ggrowth -0.015797496 0.0524098815 -0.3014221 7.633615e-01
## l(diff.ggrowth, 1) -0.216419889 0.0639485787 -3.3842799 8.372077e-04
## l(diff.ggrowth, 2) -0.146205740 0.0657339718 -2.2242037 2.709386e-02
## l(diff.ggrowth, 3) -0.147186933 0.0488436594 -3.0134297 2.868565e-03
## l(ggrowth, 4) 0.034571318 0.0497538378 0.6948473 4.878433e-01
## attr(,"type")
## [1] "Newey-West (L=5)"

Assuming money and government expenditures are exogenous, the coefficients estimated represent the (mon-
etary/fiscal) cumulative multipliers. If you differenced them out, they would represent the dynamic multi-
pliers. The coefficients are easy to plot when estimated through fixest:

# Collect the cumulative multipliers
cumu <- data.frame(Estimate = stl.est[-1,'Estimate']) %>%

mutate(Lag = rep(0:4, 2),
Policy = rep(c('Monetary', 'Fiscal'), each = 5))

dyna <- group_by(cumu, Policy) %>%
mutate(Estimate = ifelse(Lag == 0, Estimate, Estimate-lag(Estimate)))

multipliers <- rbind(cumu, dyna) %>%
mutate(Multiplier = rep(c('Cumulative', 'Dynamic'), each = 10))

multi.table <- pivot_wider(multipliers,
names_from = c(Policy, Multiplier),
values_from = Estimate)

print(multi.table)

## # A tibble: 5 x 5
## Lag Monetary_Cumulative Fiscal_Cumulative Monetary_Dynamic Fiscal_Dynamic
## <int> <dbl> <dbl> <dbl> <dbl>
## 1 0 0.169 -0.0158 0.169 -0.0158
## 2 1 0.150 -0.216 -0.0182 -0.201
## 3 2 0.0415 -0.146 -0.109 0.0702
## 4 3 -0.0163 -0.147 -0.0578 -0.000981
## 5 4 0.112 0.0346 0.128 0.182

How can you test for the statistical significance of the cumulative dynamic multipliers and the
long-run cumulative dynamic multiplier?

(i) Sketch the estimated dynamic and cumulative dynamic fiscal and monetary
multipliers (similar to Fig 16.2 in the textbook)

ggplot(multipliers, aes(x = Lag, y = Estimate, color = Multiplier)) +
theme_bw() +
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geom_line() +
theme(legend.position = 'top') +
ggtitle('Estimated multipliers') +
xlab('Lags') + ylab('') + facet_grid(~ Policy)
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(j) For these coefficients to represent dynamic ultipliers, the money supply and
government expenditures must be exogenous variables. Explain why this is un-
likely to be the case. As a result, what importance should you attach to the
above results?

There is little reason to believe that these government instruments are exogenous. Even if the monetary
base and those components of government expenditures which do not respond to business cycle fluctuations
had been chosen rather than the above regressors, these instruments respond to changes in the growth rate
of GDP.

In fact, government reaction functions were also estimated at the time to capture how government instruments
respond to changes in target variables. As a result, the regressors will be correlated with the error term,
OLS estimation is inconsistent, and inference not dependable. It is hard to imagine how useable information
can be retrieved from these numbers.
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Practice Problem 2: Stock-Watson Empirical Exercise 16.1

Note that the textbook leads you to the data hosted on the official textbook website. This data does not
match what’s in the textbook or the solutions! It doesn’t even have the variables you need to answer any
of these subquestions. I had to find the original dataset on an unofficial website so download it from my
recitation folder instead:

macro <- read_excel('data/UsMacro_Monthly.xlsx')
head(macro)

## # A tibble: 6 x 6
## Year Month IP Oil CPI PCED
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1947 1 13.6 NA 21.5 NA
## 2 1947 2 13.7 NA 21.6 NA
## 3 1947 3 13.7 NA 22 NA
## 4 1947 4 13.6 NA 22 NA
## 5 1947 5 13.7 NA 22.0 NA
## 6 1947 6 13.7 NA 22.1 NA

Part a: Compute the monthly growth rate in IP, expressed in percentage points.
What are the mean and standard deviation of IP growth over the 1960:M1–
2017:M12 sample period? What are the units for IP growth (percent, percent
per annum, percent per month, or something else)?

macro %<>% mutate(ip.growth = 100*(log(IP)-log(lag(IP))))

macro.sample <- filter(macro, Year >= 1960 & Year <= 2017)
mean(macro.sample$ip.growth)

## [1] 0.2235496

sd(macro.sample$ip.growth)

## [1] 0.7781159

So we have a mean of about 0.22 and a standard deviation of about 0.75. This is slightly different from the
provided solutions, which seem to be using a sample from the period 1952-2009 for some reason (different
textbook?) rather than 1960-2017.

Part b: Plot the value of Ot. Why are so many values of Ot equal to 0? Why
aren’t some values of Ot negative?

We want to plot the value of oil. Let’s create a Date variable that combines the info in Year and Month first:

macro %<>% mutate(Date = as.Date(ISOdate(Year, Month, 1)))
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Here, the 1 just tells R to assign it the first day of the month.

Now let’s plot the oil time series:

ggplot(macro, aes(x = Date, y = Oil)) +
theme_bw() + # A black-and-white theme I like over the gray default
geom_line() + # Draw a line graph using Date on the x and Oil on the y
xlab('Date') + ggtitle('Time series of O') + ylab('')

## Warning: Removed 12 rows containing missing values (‘geom_line()‘).

0.0

0.1

0.2

0.3

1960 1980 2000
Date
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From Exercise 16.1, O here is defined as “the greater of 0 or the percentage point difference between oil
prices at date t and their maximum value during the past three years.” Thus it equals 0 whenever the price
of oil is less than the maximum during the previous three years.

Part c: Estimate a distributed lag model regressing IP growth against the current
value and 18 lagged values of O, including an intercept. What value of the HAC
standard error truncation parameter did you choose? Why?

We are estimating a distributed lag model of IP growth onto the current and 18 lagged values of the variable
Ot.

First, let’s calculate the HAC truncation parameter m:
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m <- 0.75*nrow(macro)ˆ(1/3)
m <- ceiling(m)
m

## [1] 7

Estimating the requested distributed lag model:

# Create an id variable like before
macro %<>% mutate(id = 999)
oil.dyn <- feols(ip.growth ~ l(Oil, 0:18), macro,

panel.id = ~ id + Date,
vcov = NW(m))

## NOTE: 30 observations removed because of NA values (LHS: 1, RHS: 30).

Part d: Taken as a group, are the coefficients on Ot statistically significantly
different from 0?

Printing the regression output, including an F-test on all these regressors:

etable(oil.dyn, fitstat = ~ wald + wald.p, markdown = T)
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Dependent Variable: ip.growth
Model: (1)
Variables
Constant 0.4275∗∗∗

(0.0675)
Oil 0.1553

(0.8532)
l(Oil,1) -0.9760

(0.9559)
l(Oil,2) -1.403∗

(0.7918)
l(Oil,3) -0.8315

(0.9295)
l(Oil,4) -0.4064

(0.8824)
l(Oil,5) -0.4202

(0.7929)
l(Oil,6) -2.555∗

(1.472)
l(Oil,7) -0.2286

(0.9797)
l(Oil,8) 0.8800

(1.008)
l(Oil,9) -1.639

(1.028)
l(Oil,10) -3.923∗∗

(1.872)
l(Oil,11) -2.607

(1.954)
l(Oil,12) -0.2247

(1.292)
l(Oil,13) -1.555

(1.131)
l(Oil,14) -1.483

(0.9120)
l(Oil,15) -1.479∗

(0.8443)
l(Oil,16) -0.1002

(0.9037)
l(Oil,17) 0.4981

(0.7493)
l(Oil,18) 0.0096

(0.9699)
Fit statistics
Wald (joint nullity) 1.7399
Wald (joint nullity), p-value 0.02607

Newey-West (L=7) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Or alternatively:
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wald(oil.dyn)

## Wald test, H0: joint nullity of Oil, l(Oil, 1), l(Oil, 2), l(Oil, 3), l(Oil, 4), l(Oil, 5) and 13 others
## stat = 1.73988, p-value = 0.02607, on 19 and 706 DoF, VCOV: Newey-West (L=7).

With a p-value of 0.026, we can reject the hypothesis of nullity in the Oil regressors at a 5% significance
level

Part e: Construct graphs like those in Figure 16.2, showing the estimated dy-
namic multipliers, cumulative multipliers, and 95% confidence intervals. Com-
ment on the real-world size of the multipliers.

The above model captured dynamic (non-cumulative) effects. To capture cumulative effects, we would run a
related model of up to seventeen lags of differenced Oil values and then include the 18th lag of non-differenced
Oil. This means we’ll need to create a new variable that is the first difference of the Oil variable:

macro %<>% mutate(diff.Oil = Oil-lag(Oil))
oil.cumdyn <- feols(ip.growth ~ l(diff.Oil, 0:17) + l(Oil, 18),

macro,
panel.id = ~ id + Date,
vcov = NW(m))

## NOTE: 30 observations removed because of NA values (LHS: 1, RHS: 30).

etable(oil.dyn, oil.cumdyn)

## oil.dyn oil.cumdyn
## Dependent Var.: ip.growth ip.growth
##
## Constant 0.4275*** (0.0675) 0.4275*** (0.0675)
## Oil 0.1553 (0.8532)
## l(Oil,1) -0.9760 (0.9559)
## l(Oil,2) -1.403. (0.7918)
## l(Oil,3) -0.8315 (0.9295)
## l(Oil,4) -0.4064 (0.8824)
## l(Oil,5) -0.4202 (0.7929)
## l(Oil,6) -2.555. (1.472)
## l(Oil,7) -0.2286 (0.9797)
## l(Oil,8) 0.8800 (1.008)
## l(Oil,9) -1.639 (1.028)
## l(Oil,10) -3.923* (1.872)
## l(Oil,11) -2.607 (1.954)
## l(Oil,12) -0.2247 (1.292)
## l(Oil,13) -1.555 (1.131)
## l(Oil,14) -1.483 (0.9120)
## l(Oil,15) -1.479. (0.8443)
## l(Oil,16) -0.1002 (0.9037)
## l(Oil,17) 0.4981 (0.7493)
## l(Oil,18) 0.0096 (0.9699) -18.29*** (4.478)
## diff.Oil 0.1553 (0.8532)
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## l(diff.Oil,1) -0.8207 (1.150)
## l(diff.Oil,2) -2.224 (1.391)
## l(diff.Oil,3) -3.055. (1.786)
## l(diff.Oil,4) -3.462. (1.964)
## l(diff.Oil,5) -3.882. (2.298)
## l(diff.Oil,6) -6.437* (2.884)
## l(diff.Oil,7) -6.666* (2.813)
## l(diff.Oil,8) -5.786* (2.708)
## l(diff.Oil,9) -7.425* (2.903)
## l(diff.Oil,10) -11.35** (3.579)
## l(diff.Oil,11) -13.96*** (3.917)
## l(diff.Oil,12) -14.18*** (4.259)
## l(diff.Oil,13) -15.74*** (4.472)
## l(diff.Oil,14) -17.22*** (4.682)
## l(diff.Oil,15) -18.70*** (4.653)
## l(diff.Oil,16) -18.80*** (4.493)
## l(diff.Oil,17) -18.30*** (4.441)
## _______________ __________________ __________________
## S.E. type Newey-West (L=7) Newey-West (L=7)
## Observations 726 726
## R2 0.07860 0.07860
## Adj. R2 0.05380 0.05380
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Then it is easy to draw the desired graphs using fixest’s coefplot function:

coefplot(oil.dyn, drop = 'Constant',
main = 'Dynamic multipliers', xlab = 'Lag')

16



Dynamic multipliers

Lag

E
st

im
at

e 
an

d 
95

%
 C

on
f. 

In
t.

−
8

−
6

−
4

−
2

0
2

Oil l(Oil, 2) l(Oil, 5) l(Oil, 8) l(Oil, 11) l(Oil, 14) l(Oil, 17)

coefplot(oil.cumdyn, drop = c('Constant', 'lag(Oil, 18)'),
main = 'Cumulative multipliers', xlab = 'Lag')
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Cumulative multipliers
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Or with some customization:

dyn <- coefplot(oil.dyn, drop = 'Constant',
main = 'The effect of oil prices on IP growth rate\nDynamic multipliers',
xlab = 'Lag',
ci.join = T, ci.lty = 0, ci.fill = T, ci.fill.par = list(col = 'lightblue'),
pt.join = T)
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The effect of oil prices on IP growth rate
Dynamic multipliers
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cumdyn <- coefplot(oil.cumdyn, drop = 'Constant', ci.join = T,
main = 'The effect of oil prices on IP growth rate\nCumulative dynamic multipliers',
xlab = 'Lag',
ci.lty = 0, ci.fill = T, ci.fill.par = list(col = 'red'),
pt.join = T)
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The effect of oil prices on IP growth rate
Cumulative dynamic multipliers
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Practice Problems 3-5: Stock-Watson non-empirical exercises 14.1,
14.2, 14.5 on iPad
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