
A graphical exploration of fixed effects panel models

Matthew Alampay Davis

June 27, 2023

This note is just to demonstrate what fixed effects panel models do and how they differ from pooled OLS
estimation. If you find it just adds to your confusion, then feel free to disregard but I think students in the
past have found it helpful. The commands used here are also not important, the discussion should be pretty
self-contained and follow directly from the various graphs.
Suppose I have 32 datapoints. This (fake) dataset has two variables: Notesi is the number of hours a student
indexed by i spent studying my recitation notes and Scorei is the score they received in a problem set:

ggplot(test, aes(x = study, y = score)) +
theme_bw() +
geom_smooth(method = 'lm', se = F) +
ylab('Problem set score') + xlab("Hours spent studying Matt's notes") +
geom_point()

## ‘geom_smooth()‘ using formula = ’y ~ x’
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This plot seems to suggest that studying my notes actually makes students perform worse. Indeed, when we
run a basic regression, we get a negative effect significant at the 5% level:

feols(score ~ study, test) %>% etable(markdown = T)

Dependent Variable: score
Model: (1)
Variables
Constant 78.43∗∗∗

(0.3283)
study -1.503∗∗

(0.5623)
Fit statistics
Observations 32
R2 0.19231
Adjusted R2 0.16539

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

This regression suggests that for every additional hour a student spends studying my notes, their expected
problem set score falls by 1.5 points. Obviously, this doesn’t make sense given that I’m such a good TA.
How did this happen?

It turns out that our data isn’t cross-sectional after all. The 32 observations actually correspond to just
four students and their performances on the eight problem sets. Thus we can say the dataset has a panel
structure where we have T = 8 “periods” corresponding to the eight problem sets and N = 4 students as
different “entities” or “units”. If we color the points by student, we get the following:

ggplot() +
theme_bw() +
geom_smooth(data = test, aes(x = study, y = score), method = 'lm', se = F) +
ylab('Problem set score') + xlab("Hours spent studying Matt's notes") +
geom_point(data = test, aes(x = study, y = score, color = student)) +
geom_smooth(data = test, aes(x = study, y = score, color = student), se = F, method = 'lm')

## ‘geom_smooth()‘ using formula = ’y ~ x’
## ‘geom_smooth()‘ using formula = ’y ~ x’
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Now the data is starting to make some sense: each student individually is seeing positive performance gains
from reading my notes—this is captured by the positive student-specific slopes—but if we regarded all the
points as independently drawn the way we do with pooled OLS, we’d infer a negative effect (as seen in the
blue line of best fit) because we’d be actually be running a pooled OLS regression of data with a panel
structure. This gives misleading estimates if there are student-specific factors that are unaccounted for
that are causing omitted variable bias. Fixed effects panel models account for these even without having
exhaustive data on those potentially relevant variables. Formally, these individual-specific omitted factors
are contained in the αi term here:

Scoreit = αi + βNotesit + uit

For example, α4 might absorb the negative effect of Student 4 having a particularly annoying roommate
who prevents Student 4 from focusing on his work. Even if different students experience similar benefits to
studying my excellent notes (meaning that reading my notes have the same per-hour positive effect β on their
problem set score), systematic differences in student-level characteristics could give each linear relationship
a different intercept αi for each student i.

Fixed effects models allow us to account for these unobservable characteristics simply by entity/unit or time
demeaning. The lecture and textbook guides us through the algebraic justification for this, but basically the
individual effects are differenced away in the demeaning process so that the identifying variation comes from
deviations from entity means: this is why it’s often called the “within” estimator. We can visualize what
demeaning variables accomplishes graphically here for intuition.

First, let us mark the mean time spent studying my Notes for each student:
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ggplot(test, aes(x = study, y = score, color = student)) +
theme_bw() +
ylab('Problem set score') + xlab("Hours spent studying Matt's notes") +
geom_point() + geom_vline(aes(xintercept = mean.study, color = student))
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Then, for each observation, subtract their mean hours from their student-specific mean hours so that each
student’s hours are mean zero (the vertical line in black below):

ggplot(test, aes(x = study-mean.study, y = score, color = student)) +
theme_bw() +
ylab('Problem set score') + xlab("Hours spent studying Matt's notes relative to student's mean") +
geom_point() +
geom_vline(xintercept = 0, color = 'black', lty = 2)
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Now for the dependent variable. Let’s mark the mean problem set score for each student:

ggplot(test, aes(x = study-mean.study, y = score, color = student)) +
theme_bw() +
ylab('Problem set score') + xlab("Hours spent studying Matt's notes relative to student's mean") +
geom_point() + geom_hline(aes(yintercept = mean.score, color = student)) +
geom_vline(xintercept = 0, color = 'black', lty = 2)
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Then as before, for each observation, subtract their student-specific mean score so the vertical axis is now
relative to their student-specific means. Now we have a horizontal line whose y-intercept is zero corresponding
to the student’s mean deviation from their mean score (which by definition is 0)

ggplot(test, aes(x = study-mean.study, y = score-mean.score)) +
theme_bw() +
ylab("Problem set score relative to student's mean") + xlab("Hours spent studying Matt's notes relative to student's mean") +
geom_smooth(method = 'lm', se = F) +
geom_point(aes(color = student)) +
geom_vline(xintercept = 0, color = 'black', lty = 2) +
geom_hline(yintercept = 0, color = 'black', lty = 2)

## ‘geom_smooth()‘ using formula = ’y ~ x’
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Aha. Now when we run the OLS regression on this demeaned data, we can get an estimate of the effect of
studying my notes that makes sense:

test %<>% mutate(score.demeaned = score-mean.score,
study.demeaned = study-mean.study)

feols(score.demeaned ~ study.demeaned, data = test, cluster = 'student') %>% etable

## .
## Dependent Var.: score.demeaned
##
## Constant -8.88e-16 (1.73e-15)
## study.demeaned 9.250*** (0.5066)
## _______________ ____________________
## S.E.: Clustered by: student
## Observations 32
## R2 0.74110
## Adj. R2 0.73247
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

This gives us the same result as using the original data with unit (here, student) fixed effects:

fe1 <- feols(score ~ study | student, data = test, cluster = 'student')
etable(fe1)

## fe1
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## Dependent Var.: score
##
## study 9.250*** (0.5066)
## Fixed-Effects: -----------------
## student Yes
## _______________ _________________
## S.E.: Clustered by: student
## Observations 32
## R2 0.84749
## Within R2 0.74110
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

These estimates suggest that for every hour spent studying my notes, a student’s expected problem set score
increases by 9.25 points and that this estimate is very significant.

We can also extract the estimated values of the student fixed effects:

fixef(fe1)

## $student
## 1 2 3 4
## 77.15713 74.26691 71.54054 68.74349
##
## attr(,"class")
## [1] "fixest.fixef" "list"
## attr(,"exponential")
## [1] FALSE

The fixed effects suggest that Student 1 is the highest performing student with a mean expected problem set
score of 77.2. Students 2 to 4 have decreasing mean scores, corresponding to systematic differences in their
implied intercepts. This is also what led to our initial negative relationship: the students with the lowest
average scores spent the most time studying. But this does not mean that studying more decreased their
scores. Instead, the fixed effects model reveals that once we account for differences in average time spent
studying my notes, additional time spent studying my notes is associated with better scores for all students.

Note that all the above analysis describes entity fixed effects. We could perform a similar exercise to capture
time fixed effects µt if we suspect the presence of time-specific (here, problem-set specific) characteristics
of each observation. For example, a particularly difficult problem set would cause trouble for all students
relative to the average problem set. If a regression with these problem-set fixed effects still produces a
positive coefficient on study, this would still be consistent with the idea that my notes help increase students
cores. And of course we could include both entity (student) and time (pset) fixed effects together to account
for both sources of systematic difference.

Hopefully this was helpful but if not, feel free to disregard. The main point is that if anyone does poorly on
the exam, even if it might seem like it’s my fault it’s really not. Best of luck!
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