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# Load all datasets used in this Notebook
guns <- read_dta('data/handguns.dta') # Practice Question 1
smoking <- read_dta('data/Smoking.dta') # Practice Question 2

Practice Question 1: Stock-Watson Empirical Exercise 10.1

Some U.S. states have enacted laws that allow citizens to carry concealed weapons. These laws are known as
“shall-issue” laws because they instruct local authorities to issue a concealed weapons permit to all applicants
who are citizens, are mentally competent, and have not been convicted of a felony. (Some states have some
additional restrictions.)

Proponents argue that if more people carry concealed weapons, crime will decline because criminals will be
deterred from attacking other people. Opponents argue that crime will increase because of accidental or
spontaneous use of the weapons. In this exercise, you will analyze the effect of concealed weapons laws on
violent crimes.

a) Estimate (1) a regression of ln(vio) against shall and (2) a regression of ln(vio)
against shall, incarc_rate, density, avginc, pop, pb1064, pw1064, and pm1029.

We are using the feols function (“fixed effects estimation by OLS”) in the fixest package. Note also that this
is panel data where the unit is defined by the state variable and the time is defined by the year variable. In
this context, we prefer to use standard errors clustered at the state level:

guns %<>% mutate(log.vio = log(vio))

mod.1a1 <- feols(log.vio ~ shall, data = guns)
mod.1a2 <- feols(log.vio ~ shall, data = guns)

etable(mod.1a1, mod.1a2, cluster = 'state', digits = 6, markdown = T)
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Dependent Variable: log.vio
Model: (1) (2)
Variables
Constant 6.13492∗∗∗ 6.13492∗∗∗

(0.079027) (0.079027)
shall -0.442965∗∗∗ -0.442965∗∗∗

(0.157018) (0.157018)
Fit statistics
Observations 1,173 1,173
R2 0.08664 0.08664
Adjusted R2 0.08586 0.08586

Clustered (state) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

i. Interpret the coefficient on shall in regression (2). Is this estimate large or small in a
real-world sense?

The coefficient is -0.368, which suggests that shall-issue laws is associated with a violent crime rate 36%
lower. The p-value associated with this estimate is less than 0.001, indicating it is a statistically significant
effect. The magnitude of this effect is also clearly large in a real-world sense.

ii. Does adding the control variables in regression (2) change the estimated effect of a shall-issue
law in regression (1) as measured by statistical significance? As measured by the real-world
significance of the estimated coefficient?

The coefficient in (1) is -0.443; in (2) it is -0.369. Both are highly statistically significant. Adding the control
variables results in a small drop in the coefficient.

iii. Suggest a variable that varies across states but plausibly varies little or not at all over time
and that could cause omitted variable bias in regression (2).

There are several examples. Here are two: Attitudes towards guns and crime, and quality of police and other
crime-prevention programs.

b) Do the results change when you add fixed state effects? If so, which set of
regression results is more credible, and why?

mod.1b <- feols(log.vio ~ shall + incarc_rate + density + avginc + pop + pb1064 + pw1064 + pm1029 | state, data = guns)
etable(mod.1a2, mod.1b, cluster = 'state', markdown = T)
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Dependent Variable: log.vio
Model: (1) (2)
Variables
Constant 6.135∗∗∗

(0.0790)
shall -0.4430∗∗∗ -0.0461

(0.1570) (0.0418)
incarc_rate −7.1 × 10−5

(0.0003)
density -0.1723

(0.1376)
avginc -0.0092

(0.0130)
pop 0.0115

(0.0142)
pb1064 0.1043∗∗∗

(0.0327)
pw1064 0.0409∗∗∗

(0.0135)
pm1029 -0.0503∗∗

(0.0207)
Fixed-effects
state Yes
Fit statistics
Observations 1,173 1,173
R2 0.08664 0.94111
Within R2 0.21779

Clustered (state) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note that we here include state fixed effects just by referring to the “state” variable to the regression formula
with a vertical bar “|” separating it from the regular part of the formula.

In this new regression with state fixed effects, the coefficient on shall falls to -0.046, a large reduction. Evi-
dently there was important omitted variable bias in (2). Further, the estimate is not statistically significantly
different from zero.

c) Do the results change when you add fixed time effects? If so, which set of
regression results is more credible, and why?

mod.1c <- feols(log.vio ~ shall + incarc_rate + density + avginc + pop + pb1064 + pw1064 + pm1029 | state + year, data = guns)
etable(mod.1a2, mod.1b, mod.1c, cluster = 'state', markdown = T)
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Dependent Variable: log.vio
Model: (1) (2) (3)
Variables
Constant 6.135∗∗∗

(0.0790)
shall -0.4430∗∗∗ -0.0461 -0.0280

(0.1570) (0.0418) (0.0407)
incarc_rate −7.1 × 10−5 7.6 × 10−5

(0.0003) (0.0002)
density -0.1723 -0.0916

(0.1376) (0.1239)
avginc -0.0092 0.0010

(0.0130) (0.0165)
pop 0.0115 -0.0048

(0.0142) (0.0152)
pb1064 0.1043∗∗∗ 0.0292

(0.0327) (0.0495)
pw1064 0.0409∗∗∗ 0.0092

(0.0135) (0.0238)
pm1029 -0.0503∗∗ 0.0733

(0.0207) (0.0525)
Fixed-effects
state Yes Yes
year Yes
Fit statistics
Observations 1,173 1,173 1,173
R2 0.08664 0.94111 0.95618
Within R2 0.21779 0.05635

Clustered (state) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The coefficient falls further to -0.028. The coefficient is insignificantly different from zero.

Testing the joint significance of the time fixed effects. There isn’t an in-built function to do this (since it’s
an unusual test) but here’s how you could do it:

# Estimate the model but with time dummies explicitly included
mod.1c.dummies <- feols(log.vio ~ shall + incarc_rate + density + avginc + pop + pb1064 + pw1064 + pm1029 + factor(year) | state, data = guns, cluster = 'state')
# Test the linear hypothesis that all the dummies (variables beginning with factor) have a coefficient of 0
wald(mod.1c.dummies, cluster = 'state', keep = 'year', )

## Wald test, H0: joint nullity of factor(year)78, factor(year)79, factor(year)80, factor(year)81, factor(year)82, factor(year)83 and 16 others
## stat = 21.6, p-value < 2.2e-16, on 22 and 1,092 DoF, VCOV: Clustered (state).

The year fixed effects are jointly statistically significant with an F-statistic of 21.6, so this regression seems
better specified than (3).

d) Repeat the analysis using ln(rob) and ln(mur) in place of ln(vio).

Here’s a very compact way of displaying all 12 regressions that questions 1a-1d is asking for:
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guns %<>% mutate(log.rob = log(rob),
log.mur = log(mur))

mods.1d <- feols(c(log.vio, log.rob, log.mur) ~ # vector of all outcome variables of interest
# Cumulative stepwise function (csw) to run models, cumulatively adding more regressors
csw(shall,

incarc_rate + density + avginc + pop + pb1064 + pw1064 + pm1029,
# Include fixed effects here too as factor variables
factor(state),
factor(year)),

data = guns,
# Cluster SEs for all these regressions at the state level
cluster = ~ state)

etable(mods.1d,
# display 95% confidence interval rather than standard errors
coefstat = 'confint', ci = 0.95,
# cluster all regressions' standard errors at the state level
cluster = 'state',
# treat all factor variables (state and/or year) as fixed effects,
keepFactors = F,
# include more statistics
fitstat = ~ r2 + ar2 + rmse + wald + wf, markdown = T)
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Dependent Variables: log.vio log.rob log.mur
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Variables
Constant 6.135∗∗∗ 2.982 4.037∗∗∗ 3.972∗∗∗ 4.873∗∗∗ 0.9041 2.374∗∗ 3.326∗ 1.898∗∗∗ -2.486 0.8938 0.6634

[5.976; 6.294] [-1.370; 7.333] [2.539; 5.534] [1.743; 6.201] [4.641; 5.105] [-5.245; 7.053] [0.2905; 4.457] [-0.0944; 6.746] [1.710; 2.085] [-6.487; 1.516] [-1.065; 2.853] [-1.543; 2.870]
shall -0.4430∗∗∗ -0.3684∗∗∗ -0.0461 -0.0280 -0.7733∗∗∗ -0.5288∗∗∗ -0.0078 0.0268 -0.4734∗∗∗ -0.3132∗∗∗ -0.0608 -0.0149

[-0.7583; -0.1276] [-0.5972; -0.1395] [-0.1319; 0.0396] [-0.1116; 0.0556] [-1.226; -0.3209] [-0.8520; -0.2057] [-0.1211; 0.1054] [-0.0803; 0.1340] [-0.7724; -0.1744] [-0.5121; -0.1142] [-0.1367; 0.0151] [-0.0935; 0.0636]
incarc_rate 0.0016∗∗∗ −7.1 × 10−5 7.6 × 10−5 0.0010 −7.63 × 10−5 3.14 × 10−5 0.0021∗∗∗ -0.0004 -0.0001

[0.0004; 0.0028] [-0.0006; 0.0004] [-0.0004; 0.0005] [-0.0003; 0.0023] [-0.0007; 0.0006] [-0.0007; 0.0007] [0.0012; 0.0030] [-0.0012; 0.0005] [-0.0009; 0.0006]
density 0.0267 -0.1723 -0.0916 0.0905∗ -0.1861 -0.0447 0.0397 -0.6707 -0.5443

[-0.0566; 0.1100] [-0.4548; 0.1102] [-0.3460; 0.1629] [-0.0018; 0.1829] [-0.5276; 0.1554] [-0.4519; 0.3624] [-0.0405; 0.1198] [-1.483; 0.1419] [-1.200; 0.1114]
avginc 0.0012 -0.0092 0.0010 0.0407 -0.0175 0.0144 -0.0773∗∗∗ 0.0243 0.0566∗∗∗

[-0.0472; 0.0496] [-0.0358; 0.0174] [-0.0329; 0.0348] [-0.0158; 0.0973] [-0.0628; 0.0277] [-0.0365; 0.0652] [-0.1316; -0.0229] [-0.0079; 0.0565] [0.0226; 0.0906]
pop 0.0427∗∗∗ 0.0115 -0.0048 0.0778∗∗∗ 0.0163 1.64 × 10−5 0.0416∗∗∗ -0.0257 -0.0321

[0.0192; 0.0663] [-0.0177; 0.0407] [-0.0360; 0.0265] [0.0326; 0.1230] [-0.0403; 0.0730] [-0.0533; 0.0533] [0.0177; 0.0656] [-0.0675; 0.0161] [-0.0752; 0.0110]
pb1064 0.0809 0.1043∗∗∗ 0.0292 0.1022 0.1115∗∗ 0.0141 0.1308∗∗ 0.0307 0.0220

[-0.0625; 0.2242] [0.0372; 0.1714] [-0.0726; 0.1309] [-0.0774; 0.2818] [0.0065; 0.2166] [-0.1586; 0.1868] [0.0079; 0.2537] [-0.1297; 0.1911] [-0.1337; 0.1777]
pw1064 0.0312 0.0409∗∗∗ 0.0092 0.0275 0.0272 -0.0128 0.0471 0.0103 -0.0005

[-0.0373; 0.0997] [0.0132; 0.0685] [-0.0396; 0.0580] [-0.0629; 0.1179] [-0.0066; 0.0609] [-0.0801; 0.0545] [-0.0103; 0.1045] [-0.0161; 0.0368] [-0.0418; 0.0408]
pm1029 0.0089 -0.0503∗∗ 0.0733 0.0273 0.0112 0.1046 0.0655∗ 0.0392∗ 0.0692

[-0.0596; 0.0774] [-0.0928; -0.0078] [-0.0345; 0.1811] [-0.0566; 0.1111] [-0.0486; 0.0709] [-0.0453; 0.2545] [-0.0071; 0.1382] [-0.0051; 0.0836] [-0.0167; 0.1550]
Fixed-effects
state Yes Yes Yes Yes Yes Yes
year Yes Yes Yes
Fit statistics
R2 0.08664 0.56426 0.94111 0.95618 0.12081 0.59621 0.95172 0.96171 0.08337 0.60587 0.90751 0.92254
Adjusted R2 0.08586 0.56126 0.93804 0.95297 0.12006 0.59343 0.94920 0.95890 0.08259 0.60316 0.90269 0.91686
RMSE 0.61683 0.42605 0.15663 0.13511 0.89472 0.60635 0.20967 0.18673 0.67317 0.44142 0.21384 0.19569
Wald (joint nullity) 7.9586 62.125 32.631 54.370 11.789 27.215 2.7327 38.988 10.111 138.04 149.67 77.920

Clustered (state) co-variance matrix, 95% confidence intervals in brackets
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The quantitative results are similar to the results using violent crimes: there is a large estimated effect of
concealed weapons laws in specifications (1) and (2). This effect is spurious and is due to omitted variable
bias as specification (3) and (4) show.

e) In your view, what are the most important remaining threats to the internal
validity of this regression analysis?

There is potential two-way causality between this year’s incarceration rate and the number of crimes. Because
this year’s incarceration rate is much like last year’s rate, there is a potential two-way causality problem.
There are similar two-way causality issues relating crime and shall.

f) Based on your analysis, what conclusions would you draw about the effects of
concealed weapons laws on these crime rates?

The most credible results are given by the two-way fixed effects model. The 95% confidence interval for shall
contains the value of 0. Thus, there is no statistically significant evidence that concealed weapons laws have
any effect on crime rates.
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Practice Question 2: Stock-Watson Empirical Exercise 11.2

Believe it or not, workers used to be able to smoke inside office buildings. Smoking bans were introduced
in several areas during the 1990s. Supporters of these bans argued that in addition to eliminating the
externality of secondhand smoke, they would encourage smokers to quit by reducing their opportunities to
smoke.

In this assignment, you will estimate the effect of workplace smoking bans on smoking, using data on a
sample of 10,000 U.S. indoor workers from 1991 to 1993. The dataset contains information on whether
individuals were or were not subject to a workplace smoking ban, whether the individuals smoked, and other
individual characteristics.

a) Estimate the probability of smoking for (i) all workers, (ii) workers affected
by workplace smoking bans, and (iii) workers not affected by workplace smoking
bans.

Using a linear probability model:

mods.2a <- feols(smoker ~ csw0(smkban),
data = smoking,
se = 'HC1')

etable(mods.2a, fitstat = ~ r2 + ar2 + pr2 + f, markdown = T)

Dependent Variable: smoker
Model: (1) (2)
Variables
Constant 0.2423∗∗∗ 0.2896∗∗∗

(0.0043) (0.0073)
smkban -0.0776∗∗∗

(0.0090)
Fit statistics
R2 0.00780
Adjusted R2 0.00770
Pseudo R2 0.00685
F-test NaN 78.559

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

There is a 24% chance of smoking for all workers, 29.0% for workers affected by the ban and 0.290-0.08 =
21.2% for those affected by the ban

b) What is the difference in the probability of smoking between workers affected
by a workplace smoking ban and workers not affected by a workplace smoking
ban? Use a linear probability model to determine whether this difference is
statistically significant.

We answered the first part above: 7.8 percentage points is the difference. This difference is significant as the
associated p-value is less than 0.001.
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c) Estimate a linear probability model with smoker as the dependent variable and
the following regressors: smkban, female, age, age2, hsdrop, hsgrad, colsome,
colgrad, black, and hispanic. Compare the estimated effect of a smoking ban
from this regression with your answer from (b). Suggest an explanation, based
on the substance of this regression, for the change in the estimated effect of a
smoking ban between (b) and (c).

d) Test the hypothesis that the coefficient on smkban is 0 in the population
version of the regression in (c) against the alternative that it is nonzero, at the
5% significance level.

e) Test the hypothesis that the probability of smoking does not depend on the
level of education in the regression in (c). Does the probability of smoking
increase or decrease with the level of education?

f) Repeat c-e using a probit model

g) Repeat c-e using a logit model

For the linear probability model:

smoking %<>% mutate(age2 = ageˆ2)
mods2.lpm <- feols(smoker ~ csw0(smkban,

female + age + age2 + hsdrop + hsgrad + colsome + colgrad + black + hispanic),
data = smoking,
se = 'HC1')

etable(mods2.lpm, fitstat = ~ r2 + ar2 + pr2 + f, digits = 6, markdown = T)
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Dependent Variable: smoker
Model: (1) (2) (3)
Variables
Constant 0.242300∗∗∗ 0.289595∗∗∗ -0.014110

(0.004285) (0.007262) (0.041423)
smkban -0.077558∗∗∗ -0.047240∗∗∗

(0.008952) (0.008966)
female -0.033257∗∗∗

(0.008568)
age 0.009674∗∗∗

(0.001895)
age2 -0.000132∗∗∗

(2.19 × 10−5)
hsdrop 0.322714∗∗∗

(0.019488)
hsgrad 0.232701∗∗∗

(0.012590)
colsome 0.164297∗∗∗

(0.012625)
colgrad 0.044798∗∗∗

(0.012044)
black -0.027566∗

(0.016078)
hispanic -0.104816∗∗∗

(0.013975)
Fit statistics
R2 0.00780 0.05699
Adjusted R2 0.00770 0.05605
Pseudo R2 0.00685 0.05135
F-test NaN 78.559 60.371

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

From model (3) the estimated difference is -0.047, smaller than the effect in model (2). Evidently (2) suffers
from omitted variable bias. That is, smkban may be correlated with the education/race/gender indicators
or with age. For example, workers with a college degree are more likely to work in an office with a smoking
ban than high-school dropouts, and college graduates are less likely to smoke than high-school dropouts.

The p-value on the coefficient of smkban is less than 0.001 so the coefficient is statistically significant at the
1% level.

wald(mods2.lpm[[3]], keep = c('hsdrop', 'hsgrad', 'colsome', 'colgrad'))

## Wald test, H0: joint nullity of hsdrop, hsgrad, colsome and colgrad
## stat = 140.1, p-value < 2.2e-16, on 4 and 9,989 DoF, VCOV: Heteroskedasticity-robust.

The p-value of the joint hypothesis test is less than 2.2e-16 so the coefficients are significant. The omitted
education status is “Masters degree or higher.” Thus the coefficients show the increase in probability relative
to someone with a postgraduate degree. For example, the coefficient on Colgrad is 0.045, so the probability
of smoking for a college graduate is 0.045 (4.5%) higher than for someone with a postgraduate degree.
Similarly, the coefficient on HSdrop is 0.323, so the probability of smoking for a college graduate is 0.323
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(32.3%) higher than for someone with a postgraduate degree. Because the coefficients are all positive and
get smaller as educational attainment increases, the probability of smoking falls as educational attainment
increases.

The coefficient on Age2 is statistically significant. This suggests a nonlinear relationship between age and
the probability of smoking. In fact it is a negative quadratic with a probability-maximizing age of

-0.009674/(2*-0.000132)

## [1] 36.64394

For the probit and logit models:

mods2.probit<- feglm(smoker ~ csw0(smkban,
female + age + age2 + hsdrop + hsgrad + colsome + colgrad + black + hispanic),

family = binomial(link = 'probit'),
data = smoking,
se = 'HC1')

etable(mods2.probit, fitstat = ~ r2 + ar2 + pr2 + f, digits = 6, markdown = T)

Dependent Variable: smoker
Model: (1) (2) (3)
Variables
Constant -0.698923∗∗∗ -0.554568∗∗∗ -1.73493∗∗∗

(0.013712) (0.021229) (0.151675)
smkban -0.244806∗∗∗ -0.158630∗∗∗

(0.027872) (0.029176)
female -0.111732∗∗∗

(0.028866)
age 0.034511∗∗∗

(0.006855)
age2 -0.000468∗∗∗

(8.25 × 10−5)
hsdrop 1.14161∗∗∗

(0.073444)
hsgrad 0.882670∗∗∗

(0.060658)
colsome 0.677118∗∗∗

(0.061675)
colgrad 0.234683∗∗∗

(0.065572)
black -0.084279

(0.053828)
hispanic -0.338274∗∗∗

(0.050155)
Fit statistics
Pseudo R2 0.00695 0.05441

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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mods2.logit<- feglm(smoker ~ csw0(smkban,
female + age + age2 + hsdrop + hsgrad + colsome + colgrad + black + hispanic),

family = binomial(link = 'logit'),
data = smoking,
se = 'HC1')

etable(mods2.logit, fitstat = ~ r2 + ar2 + pr2 + f, digits = 6, markdown = T)

Dependent Variable: smoker
Model: (1) (2) (3)
Variables
Constant -1.14011∗∗∗ -0.897351∗∗∗ -2.99918∗∗∗

(0.023340) (0.035298) (0.265352)
smkban -0.415340∗∗∗ -0.262029∗∗∗

(0.047198) (0.049501)
female -0.190773∗∗∗

(0.049200)
age 0.059937∗∗∗

(0.011828)
age2 -0.000818∗∗∗

(0.000143)
hsdrop 2.01685∗∗∗

(0.134055)
hsgrad 1.57850∗∗∗

(0.115781)
colsome 1.22998∗∗∗

(0.117664)
colgrad 0.446583∗∗∗

(0.126394)
black -0.156034∗

(0.091295)
hispanic -0.597173∗∗∗

(0.086229)
Fit statistics
Pseudo R2 0.00695 0.05475

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

h) Predictions

i. Mr. A is white, non-Hispanic, 20 years old, and a high school dropout. Using the probit regression
and assuming that Mr. A is not subject to a workplace smoking ban, calculate the probability that
Mr. A smokes. Carry out the calculation again, assuming that he is subject to a workplace smoking
ban. What is the effect of the smoking ban on the probability of smoking?

ii. Repeat for Ms. B, a female, black, 40-year-old college graduate.

iii. Repeat (i)–(ii) using the linear probability model.

iv. Repeat (i)–(ii) using the logit model.
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preds <- data.frame(names = rep(c('Mr. A', 'Ms. B'), each = 2),
smkban = c(0, 1, 0, 1),
female = c(0, 0, 1, 1),
age = c(20, 20, 40, 40),
hsdrop = c(1, 1, 0, 0),
hsgrad = c(0, 0, 0, 0),
colsome = c(0, 0, 0, 0),
colgrad = c(0, 0, 1, 1),
black = c(0, 0, 1, 1),
hispanic = c(0, 0, 0, 0)) %>%

mutate(age2 = ageˆ2)

preds$probit.predictions <- predict(mods2.probit[[3]], newdata = preds)
preds$lpm.predictions <- predict(mods2.lpm[[3]], newdata = preds)
preds$logit.predictions <- predict(mods2.logit[[3]], newdata = preds)
preds.show <- select(preds, names, smkban, contains('predictions'))
preds.show

## names smkban probit.predictions lpm.predictions logit.predictions
## 1 Mr. A 0 0.4641020 0.44937213 0.4723103
## 2 Mr. A 1 0.4017831 0.40213226 0.4078402
## 3 Ms. B 0 0.1436957 0.14596103 0.1405121
## 4 Ms. B 1 0.1107609 0.09872116 0.1117418

So differences for Mr. A and Ms. B respectively are

# Mr. A
preds$probit.predictions[2]-preds$probit.predictions[1]

## [1] -0.06231886

preds$lpm.predictions[2]-preds$lpm.predictions[1]

## [1] -0.04723987

preds$logit.predictions[2]-preds$logit.predictions[1]

## [1] -0.06447005

# Ms. B
preds$probit.predictions[4]-preds$probit.predictions[3]

## [1] -0.03293474

preds$lpm.predictions[4]-preds$lpm.predictions[3]

## [1] -0.04723987
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preds$logit.predictions[4]-preds$logit.predictions[3]

## [1] -0.02877033

v. Based on your answers to (i)–(iv), do the logit, probit, and linear probability models differ? If they
do, which results make most sense? Are the estimated effects large in a real-world sense?

They differ a bit but are pretty consistent with one another. The estimated effects are on the order of 6
percentage points for Mr. A and 3 percentage points for Ms. B, which is large.

13


	Practice Question 1: Stock-Watson Empirical Exercise 10.1
	a) Estimate (1) a regression of ln(vio) against shall and (2) a regression of ln(vio) against shall, incarc_rate, density, avginc, pop, pb1064, pw1064, and pm1029.
	i. Interpret the coefficient on shall in regression (2). Is this estimate large or small in a real-world sense?
	ii. Does adding the control variables in regression (2) change the estimated effect of a shall-issue law in regression (1) as measured by statistical significance? As measured by the real-world significance of the estimated coefficient?
	iii. Suggest a variable that varies across states but plausibly varies little or not at all over time and that could cause omitted variable bias in regression (2).

	b) Do the results change when you add fixed state effects? If so, which set of regression results is more credible, and why?
	c) Do the results change when you add fixed time effects? If so, which set of regression results is more credible, and why?
	d) Repeat the analysis using ln(rob) and ln(mur) in place of ln(vio).
	e) In your view, what are the most important remaining threats to the internal validity of this regression analysis?
	f) Based on your analysis, what conclusions would you draw about the effects of concealed weapons laws on these crime rates?

	Practice Question 2: Stock-Watson Empirical Exercise 11.2
	a) Estimate the probability of smoking for (i) all workers, (ii) workers affected by workplace smoking bans, and (iii) workers not affected by workplace smoking bans.
	b) What is the difference in the probability of smoking between workers affected by a workplace smoking ban and workers not affected by a workplace smoking ban? Use a linear probability model to determine whether this difference is statistically significant.
	c) Estimate a linear probability model with smoker as the dependent variable and the following regressors: smkban, female, age, age2, hsdrop, hsgrad, colsome, colgrad, black, and hispanic. Compare the estimated effect of a smoking ban from this regression with your answer from (b). Suggest an explanation, based on the substance of this regression, for the change in the estimated effect of a smoking ban between (b) and (c).
	d) Test the hypothesis that the coefficient on smkban is 0 in the population version of the regression in (c) against the alternative that it is nonzero, at the 5% significance level.
	e) Test the hypothesis that the probability of smoking does not depend on the level of education in the regression in (c). Does the probability of smoking increase or decrease with the level of education?
	f) Repeat c-e using a probit model
	g) Repeat c-e using a logit model
	h) Predictions


