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Regressions with interactions

Regressions with interaction terms are a type of non-linear regression and they involve multiplying two
covariates together:

Yi = β0 + β1X1i + β2X2i + β3(X1i × X2i) + ui

Obviously, the last covariate is the interaction term. They are relevant when we think that X1’s effect on
Y depends on the value of X2. For example, in our data, we may think that having a college degree affects
earnings and that being a woman affects earnings, but we may also suspect that the effect a college education
has on earnings is different for men and women. Similarly, we may think the effect being a woman has on
earnings is different for those with and without a college degree. If so, then we want to include an interaction
term to capture this relationship.

There are a few equivalent ways to do this. Starting with what I think is the most convenient:

Method (1)

The easiest is to put an asterisk ‘*’ in between the two variables you want to interact:

int.model.1 <- lm_robust(ahe ~ female*bachelor, cps, se_type = 'HC1')
summary(int.model.1)

##
## Call:
## lm_robust(formula = ahe ~ female * bachelor, data = cps, se_type = "HC1")
##
## Standard error type: HC1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 17.498 0.1915 91.37 0.000e+00 17.123 17.8739 7094
## female -3.289 0.2820 -11.67 3.669e-31 -3.842 -2.7367 7094
## bachelor 10.557 0.3799 27.79 2.156e-161 9.812 11.3017 7094
## female:bachelor -1.727 0.5064 -3.41 6.535e-04 -2.720 -0.7341 7094
##
## Multiple R-squared: 0.175 , Adjusted R-squared: 0.1746
## F-statistic: 531 on 3 and 7094 DF, p-value: < 2.2e-16

Conveniently, this automatically adds the two interacting variables separately so no need to think about
whether you’ve included all the ‘main’ effects
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Method (2)

A second way is to use the colon ‘:’ in between the two variables you want to interact. The difference here
is doing so does not automatically include the main effects:

int.model.2a <- lm_robust(ahe ~ female:bachelor, cps, se_type = 'HC1')
summary(int.model.2a)

##
## Call:
## lm_robust(formula = ahe ~ female:bachelor, data = cps, se_type = "HC1")
##
## Standard error type: HC1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 20.618 0.1701 121.215 0.00e+00 20.285 20.951 7096
## female:bachelor 2.421 0.3134 7.725 1.27e-14 1.807 3.035 7096
##
## Multiple R-squared: 0.007592 , Adjusted R-squared: 0.007452
## F-statistic: 59.68 on 1 and 7096 DF, p-value: 1.27e-14

We’ll almost always want to include the main effects so a complete implementation has a longer formula:

int.model.2b <- lm_robust(ahe ~ female + bachelor + female:bachelor, cps, se_type = 'HC1')
summary(int.model.2b)

##
## Call:
## lm_robust(formula = ahe ~ female + bachelor + female:bachelor,
## data = cps, se_type = "HC1")
##
## Standard error type: HC1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 17.498 0.1915 91.37 0.000e+00 17.123 17.8739 7094
## female -3.289 0.2820 -11.67 3.669e-31 -3.842 -2.7367 7094
## bachelor 10.557 0.3799 27.79 2.156e-161 9.812 11.3017 7094
## female:bachelor -1.727 0.5064 -3.41 6.535e-04 -2.720 -0.7341 7094
##
## Multiple R-squared: 0.175 , Adjusted R-squared: 0.1746
## F-statistic: 531 on 3 and 7094 DF, p-value: < 2.2e-16

Method (3)

Finally, we could also define a new variable that is the product of the female and bachelor variables then
include it as a regressor in our regression formula:

cps.new <- mutate(cps, female.bachelor = female*bachelor)
int.model.3 <- lm_robust(ahe ~ female + bachelor + female.bachelor, cps.new, se_type = 'HC1')
summary(int.model.3)
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##
## Call:
## lm_robust(formula = ahe ~ female + bachelor + female.bachelor,
## data = cps.new, se_type = "HC1")
##
## Standard error type: HC1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 17.498 0.1915 91.37 0.000e+00 17.123 17.8739 7094
## female -3.289 0.2820 -11.67 3.669e-31 -3.842 -2.7367 7094
## bachelor 10.557 0.3799 27.79 2.156e-161 9.812 11.3017 7094
## female.bachelor -1.727 0.5064 -3.41 6.535e-04 -2.720 -0.7341 7094
##
## Multiple R-squared: 0.175 , Adjusted R-squared: 0.1746
## F-statistic: 531 on 3 and 7094 DF, p-value: < 2.2e-16

A bit more circuitous but all three methods are equivalent: you can see the ones that include the main
effects all produce the exact same estimates. The only difference is that in the third method, the name of
the interactive term uses a period ‘.’ instead of a colon ‘:’. I’ll tend to favor method 1.

Here’s how we’d conduct a linear Hypothesis test including female:bachelor”:

linearHypothesis(int.model.1, c('bachelor = 0', 'female:bachelor = 0'), test = 'F')

## Linear hypothesis test
##
## Hypothesis:
## bachelor = 0
## female:bachelor = 0
##
## Model 1: restricted model
## Model 2: ahe ~ female * bachelor
##
## Res.Df Df F Pr(>F)
## 1 7096
## 2 7094 2 733.72 < 2.2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Some more data cleaning

Summarizing data by group

We know how to take means and standard deviations of variables. But suppose we want to calculate
separate means and standard deviations for different subsets. See Practice Question 1 for an example that
also demonstrates the efficiency and readability of using piping and the “group_by” function from tidyverse.

Plotting data by group

Suppose we want to draw a plot with separate lines of best fit for different subsets of the data so we can
compare their slopes. Or suppose we want to draw a scatter plot and color points according to different
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values they take on (for example, color female observations differently from male observations). ggplot2 lets
us do this very efficiently as we’ll see in Practice Question 1 part b-ii.

Practice Question 1: Stock-Watson Empirical Exercise E8.1

Preview the data:

head(lead)

## # A tibble: 6 x 15
## year city state age hardness ph infrate typhoid_rate np_tub_rate
## <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1900 Alameda CA 29.0 97 7.60 0.110 0.0244 0.0305
## 2 1900 Albany NY 30.3 43 7.30 0.299 0.0414 0.0138
## 3 1900 Allegheny PA 27.1 111 7.30 0.447 0.0940 0.0277
## 4 1900 Allentown PA 27.8 176 7.70 0.384 0.0282 0.00565
## 5 1900 Altoona PA 27.0 111 7.30 0.468 0.0437 0.00771
## 6 1900 Amsterdam NY 28.6 43 7.30 0.306 0.0144 0.0191
## # i 6 more variables: mom_rate <dbl>, population <dbl>, precipitation <dbl>,
## # temperature <dbl>, lead <dbl>, foreign_share <dbl>

We will be investigating the effects of early-20th century lead contamination on infant mortality.

Part a: Compute the average infant mortality rate (Inf ) for cities with lead pipes
and for cities with nonlead pipes. Is there a statistically significant difference in
the averages?

Question’s simple enough so just for kicks, here’s two equivalent ways of answering the question:

Method 1: using the group_by and reframe functions from tidyverse:

# Method 1: in one command
lead %>% # The dataset lead

group_by(lead) %>% # Here, lead refers to the variable lead contained in the dataset also named lead
reframe(mean = mean(infrate),

sd = sd(infrate))

## # A tibble: 2 x 3
## lead mean sd
## <dbl> <dbl> <dbl>
## 1 0 0.381 0.148
## 2 1 0.403 0.153

Method 2: doing separate calculations for each category of lead:

# Lead pipes
filter(lead, lead == 1) %$% # %$% pipe to select the variable infrate

infrate %>%
mean
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## [1] 0.4032576

filter(lead, lead == 1) %$%
infrate %>%
sd

## [1] 0.1530873

# Non-lead pipes
filter(lead, lead == 0) %$%

infrate %>%
mean

## [1] 0.3811679

filter(lead, lead == 0) %$%
infrate %>%
sd

## [1] 0.1477588

Part b: The amount of lead leached from lead pipes depends on the chemistry
of the water running through the pipes. The more acidic the water is (that is,
the lower its pH ), the more lead is leached. Run a regression of Inf on Lead,
pH, and the interaction term Lead × pH.

Running the regression:

lead.mod <- lm_robust(infrate ~ lead*ph, lead, se_type = 'HC1')
summary(lead.mod)

##
## Call:
## lm_robust(formula = infrate ~ lead * ph, data = lead, se_type = "HC1")
##
## Standard error type: HC1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 0.91890 0.15049 6.106 6.866e-09 0.62180 1.21601 168
## lead 0.46180 0.20761 2.224 2.746e-02 0.05193 0.87167 168
## ph -0.07518 0.02095 -3.588 4.369e-04 -0.11654 -0.03381 168
## lead:ph -0.05686 0.02808 -2.025 4.448e-02 -0.11230 -0.00142 168
##
## Multiple R-squared: 0.2719 , Adjusted R-squared: 0.2589
## F-statistic: 20.97 on 3 and 168 DF, p-value: 1.366e-11
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b-i) The regression includes four coefficients (the intercept and the three coefficients multi-
plying the regressors). Explain what each coefficient measures.

The first coefficient is the intercept, which shows the level of Infrate when lead = 0 and pH = 0. It dictates
the level of the regression line. The second coefficient and fourth coefficients measure the effect of lead on
the infant mortality rate. Comparing two cities, one with lead pipes (lead = 1) and one without lead pipes
(lead = 0), but with the same pH, the difference in predicted infant mortality rate is

0.46180 − 0.05686 × pH

Thus, the effect of lead contamination depends on the level of acidity that we’re holding fixed.

The third and fourth coefficients measure the effect of pH on the infant mortality rate. Comparing two
cities, one with a pH of 6 and the other with a pH of 5, but the same ‘leadedness’, the difference in predicted
infant mortality rate is

−0.075 − 0.057 × lead

so the infant mortality increase associated with a one-unit increase in pH is -0.075 for cities without lead
pipes and -0.075-0.057=-0.132 for cities with lead pipes.

b-ii) Plot the estimated regression function relating Inf to pH for Lead = 0 and for Lead
= 1. Describe the differences in the regression functions, and relate these differences to the
coefficients you discussed in b-i).

You can of course plot two separate graphs for the two cases. But here’s an opportunity to try out plotting
two lines on the same graph:

ggplot(lead, aes(x = ph, y = infrate, fill = factor(lead), color = factor(lead))) +
theme_bw() +
geom_smooth(method = 'lm') +
# Give title to the axes and the legend
labs(x = 'Acidity (pH)',

y = 'Infant mortality rate',
fill = 'Lead piping', color = 'Lead piping')

## ‘geom_smooth()‘ using formula = ’y ~ x’
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Notice we have turned the variable lead into a factor. The factor function converts a numerical variable into
a categorical variable so that all values that it takes on are distinct groups. In ggplot, this means that we
set the fill and color colors to depend on this factor so that when we add any plot element, it will color the
two groups differently. In addition, it means that if we use geom_smooth to plot lines of best fit, it’ll create
separate lines for the set of observations with lead == 1 and for lead == 0 (the only two values lead takes
in this data) since geom_smooth() also takes fill and color as arguments.

The infant mortality rate is higher for cities with lead pipes, but the difference declines as the pH level
increases.

b-iii) Does lead have a statistically significant effect on Infrate?

linearHypothesis(lead.mod, c('lead = 0', 'lead:ph = 0'), test = 'F')

## Linear hypothesis test
##
## Hypothesis:
## lead = 0
## lead:ph = 0
##
## Model 1: restricted model
## Model 2: infrate ~ lead * ph
##
## Res.Df Df F Pr(>F)
## 1 170
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## 2 168 2 3.936 0.02135 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The F-statistic for the coefficient on lead and the interaction term is F = 3.936, which has a p- value of 0.02,
so the lead coefficients are jointly significant at the 5% but not the 1% significance level.

b-iv) Does the effect of lead on infant mortality depend on pH? Is this dependence statistically
significant?

lead.mod$p.value

## (Intercept) lead ph lead:ph
## 6.865990e-09 2.745960e-02 4.369094e-04 4.447784e-02

coeftable(lead.mod) # from fixest package

## Estimate Std. Error t value Pr(>|t|) CI Lower
## (Intercept) 0.91890383 0.15049414 6.105911 6.865990e-09 0.62180053
## lead 0.46179846 0.20761355 2.224317 2.745960e-02 0.05193085
## ph -0.07517915 0.02095325 -3.587948 4.369094e-04 -0.11654474
## lead:ph -0.05686222 0.02808375 -2.024737 4.447784e-02 -0.11230474
## CI Upper DF
## (Intercept) 1.216007135 168
## lead 0.871666061 168
## ph -0.033813564 168
## lead:ph -0.001419694 168

The interaction term has a t-statistic of t = -2.02, corresponding to a p-value of 0.448 so the coefficient is
significant at the 5% but not the 1% significance level.

b-v) Average value of pH

mean(lead$ph)

What is the average value of pH in the sample?

## [1] 7.322674

At this pH level, what is the estimated effect of Lead on infant mortality? Method 1:

# Create two observations with the mean ph level but different values of lead:
mean.ph <- data.frame(lead = c(1,0),

ph = mean(lead$ph))
# Estimate their infant mortality
inf.meanph <- predict(lead.mod, newdata = mean.ph)
inf.meanph
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## 1 2
## 0.4138063 0.3683914

# Take the difference between these estimates
inf.meanph[1]-inf.meanph[2]

## 1
## 0.04541495

Careful with the sign here: the interpretation here is that at the mean pH level, an observation with lead
(our first observation) is predicted to have a 0.0454 higher infant mortality than an observation without lead
(our second observation)

Method 2:

# Estimated mortality with lead
lead.1 <- data.frame(lead = 1, ph = mean(lead$ph))
# Estimated mortality with lead
lead.0 <- data.frame(lead = 0, ph = mean(lead$ph))
# Difference between estimates
predict(lead.mod, newdata = lead.1)-predict(lead.mod, newdata = lead.0)

## 1
## 0.04541495

What is the standard deviation of pH? The standard deviation of pH is

ph.sd <- sd(lead$ph)
ph.sd

## [1] 0.6917288

Suppose the pH level is one standard deviation lower than the average level of pH in the
sample: What is the estimated effect of Lead on infant mortality? The estimated effect of lead
on infant mortality when the pH is one standard deviation lower than average level of pH in the sample is
given by

# Method 1
ph.1sd.lower <- data.frame(lead = c(1,0),

ph = mean(lead$ph)-sd(lead$ph))
preds.1sd.lower <- predict(lead.mod, newdata = ph.1sd.lower)
preds.1sd.lower[1]-preds.1sd.lower[2]

## 1
## 0.08474818

# Method 2
lead.sd1 <- data.frame(lead = 1, ph = mean(lead$ph)-sd(lead$ph))
lead.sd0 <- data.frame(lead = 0, ph = mean(lead$ph)-sd(lead$ph))
predict(lead.mod, newdata = lead.sd1)-predict(lead.mod, newdata = lead.sd0)

## 1
## 0.08474818
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# Method 1
ph.1sd.higher <- data.frame(lead = c(1,0),

ph = mean(lead$ph)+sd(lead$ph))
preds.1sd.higher <- predict(lead.mod, newdata = ph.1sd.higher)
preds.1sd.higher[1]-preds.1sd.higher[2]

What if pH is one standard deviation higher than the average value?

## 1
## 0.006081724

# Method 2
lead.sd1 <- data.frame(lead = 1, ph = mean(lead$ph)+sd(lead$ph))
lead.sd0 <- data.frame(lead = 0, ph = mean(lead$ph)+sd(lead$ph))
predict(lead.mod, newdata = lead.sd1)-predict(lead.mod, newdata = lead.sd0)

## 1
## 0.006081724

b-vi) Constructing a 95% confidence interval for the effect of lead on infant mortality when
pH = 6.5

The given regression equation is

Infrate = β0 + β1lead + β2pH + β3(lead × pH) + ui

mod.lead <- lm_robust(infrate ~ lead*ph, lead, se_type = 'HC1')
summary(mod.lead)

Method 1: the margins package

##
## Call:
## lm_robust(formula = infrate ~ lead * ph, data = lead, se_type = "HC1")
##
## Standard error type: HC1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 0.91890 0.15049 6.106 6.866e-09 0.62180 1.21601 168
## lead 0.46180 0.20761 2.224 2.746e-02 0.05193 0.87167 168
## ph -0.07518 0.02095 -3.588 4.369e-04 -0.11654 -0.03381 168
## lead:ph -0.05686 0.02808 -2.025 4.448e-02 -0.11230 -0.00142 168
##
## Multiple R-squared: 0.2719 , Adjusted R-squared: 0.2589
## F-statistic: 20.97 on 3 and 168 DF, p-value: 1.366e-11

10



The given coefficient on lead is the marginal effect of lead but when pH = 0. We want the marginal effect
of lead when pH = 6.5:

marg.ph65 <- margins(mod.lead, at = list(ph = 6.5))
marg.ph65

## Average marginal effects at specified values

## lm_robust(formula = infrate ~ lead * ph, data = lead, se_type = "HC1")

## at(ph) lead ph
## 6.5 0.09219 -0.1139

The marginal effect of lead is estimated to be 0.092. We can construct the corresponding confidence intervals
using confint():

confint(marg.ph65, level = 0.95)

## lower upper
## lead 0.02778994 0.15659815
## ph -0.14203619 -0.08568118

This gives a confidence interval of 0.028 to 0.157

Method 2: Transforming the regression Referring to method 2 of section 7.3 of Stock-Watson, we
add and subtract 6.5β3lead to the regression:

Infrate = β0 + (β1 + 6.5β3)lead + β2pH + β3[pH · lead − 6.5 · lead] + ui

Estimating this regression

lead %<>% mutate(lead, x3 = lead*ph-6.5*lead)
mod.lead2 <- lm_robust(infrate ~ lead + ph + x3, lead, se_type = 'HC1')
summary(mod.lead2)

##
## Call:
## lm_robust(formula = infrate ~ lead + ph + x3, data = lead, se_type = "HC1")
##
## Standard error type: HC1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 0.91890 0.15049 6.106 6.866e-09 0.62180 1.21601 168
## lead 0.09219 0.03286 2.806 5.614e-03 0.02732 0.15707 168
## ph -0.07518 0.02095 -3.588 4.369e-04 -0.11654 -0.03381 168
## x3 -0.05686 0.02808 -2.025 4.448e-02 -0.11230 -0.00142 168
##
## Multiple R-squared: 0.2719 , Adjusted R-squared: 0.2589
## F-statistic: 20.97 on 3 and 168 DF, p-value: 1.366e-11

Then we get exactly the same estimated effet, here presented as the coefficient on lead. The corresponding
confidence interval is the one for the coefficient on lead: 0.027 to 0.157, essentially the same as through
Method 1.
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Part c: The analysis in (b) may suffer from omitted variable bias because it
neglects factors that affect infant mortality and that might potentially be cor-
related with Lead and pH. Investigate this concern, using the other variables in
the data set.

There are several demographic variables in the dataset. You should add these and see if the conclusions from
(b) change in an important way. (Skipping this)

Practice Question 2: Stock-Watson Empirical Exercise E8.2

One thing to note here is that this data comes from 2015 whereas the solutions seem to use 2012 data so
the estimates are slightly different. When I’m comparing models below, I’m copying and pasting the official
answers provided so they may actually be incompatible with the results being displayed.

Transform data:

head(cps)

## # A tibble: 6 x 5
## year ahe bachelor female age
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015 11.8 0 0 26
## 2 2015 9.62 0 1 33
## 3 2015 12.0 0 0 31
## 4 2015 18.4 0 0 32
## 5 2015 41.8 0 0 28
## 6 2015 19.2 0 1 31

# Creating new variables needed for the regressions
cps %<>% mutate(log.ahe = log(ahe),

log.age = log(age),
age2 = ageˆ2)

This question asks us to run several regressions so I think it’s convenient to just run them all at the beginning
then refer to them as needed:

# You can create five separate model objects as usual:
mod.a <- lm_robust(ahe ~ age + female + bachelor, cps, se_type = 'HC1')
mod.b <- lm_robust(log.ahe ~ age + female + bachelor, cps, se_type = 'HC1')
mod.c <- lm_robust(log.ahe ~ log.age + female + bachelor, cps, se_type = 'HC1')
mod.d <- lm_robust(log.ahe ~ age + age2 + female + bachelor, cps, se_type = 'HC1')
mod.i <- lm_robust(log.ahe ~ age + age2 + female*bachelor, cps, se_type = 'HC1')
# And then running five separate summary() commands

# Here's a convenient way to do this in one command and one object using the fixest package:
## Models a, b: different LHS, same RHS
mods.ab <- feols(c(ahe, log.ahe) ~ age + female + bachelor,

data = cps, se = 'HC1')
## Models c, d, i: same LHS, different RHS
mods.cdi <- feols(log.ahe ~ sw(log.age + female + bachelor,

age + age2 + female + bachelor,
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age + age2 + female*bachelor,
female*bachelor + female*age + female*age2),

data = cps, se = 'HC1')

With the latter, we can call any of the models estimated using “mods$” and selecting the relevant model or
call mods[[number]] where number is the index of the model in order of estimation.

It also becomes convenient for making compact tables:

etable(mods.ab, mods.cdi, markdown = T)

Dependent Variables: ahe log.ahe
Model: (1) (2) (3) (4) (5) (6)
Variables
Constant 2.045 2.027∗∗∗ 0.3233 0.4187 0.4119 0.2905

(1.324) (0.0600) (0.1986) (0.6696) (0.6694) (0.9145)
age 0.5313∗∗∗ 0.0242∗∗∗ 0.1341∗∗∗ 0.1348∗∗∗ 0.1392∗∗

(0.0446) (0.0020) (0.0456) (0.0456) (0.0622)
female -4.144∗∗∗ -0.1776∗∗∗ -0.1775∗∗∗ -0.1774∗∗∗ -0.1903∗∗∗ -0.0345

(0.2624) (0.0115) (0.0115) (0.0115) (0.0161) (1.336)
bachelor 9.846∗∗∗ 0.4615∗∗∗ 0.4615∗∗∗ 0.4616∗∗∗ 0.4521∗∗∗ 0.4514∗∗∗

(0.2613) (0.0115) (0.0115) (0.0115) (0.0155) (0.0155)
log.age 0.7154∗∗∗

(0.0586)
age2 -0.0019∗∗ -0.0019∗∗ -0.0019∗

(0.0008) (0.0008) (0.0010)
female × bachelor 0.0235 0.0231

(0.0229) (0.0229)
female × age -0.0013

(0.0911)
female × age2 -0.0001

(0.0015)
Fit statistics
Observations 7,098 7,098 7,098 7,098 7,098 7,098
R2 0.18964 0.20837 0.20863 0.20901 0.20913 0.20971
Adjusted R2 0.18930 0.20804 0.20829 0.20857 0.20857 0.20893

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Parts a-d:

All these subquestions also ask us to look at the effect of age increasing from 25 to 26 and from 33 to 34 for
each of the different models so we also define those cases below. Since we will be interested in the age effect
which does not interact with our control variables female and bachelor, we arbitrarily set sex to female and
bachelor to 1.

# Method 1
age.25 <- data.frame(age = 25) %>%

mutate(age2 = ageˆ2, log.age = log(age),
female = 1, bachelor = 1)
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age.26 <- data.frame(age = 26) %>%
mutate(age2 = ageˆ2, log.age = log(age),

female = 1, bachelor = 1)
age.33 <- data.frame(age = 33) %>%

mutate(age2 = ageˆ2, log.age = log(age),
female = 1, bachelor = 1)

age.34 <- data.frame(age = 34) %>%
mutate(age2 = ageˆ2, log.age = log(age),

female = 1, bachelor = 1)

# Method 2
ages <- data.frame(age = c(25, 26, 33, 34)) %>%

mutate(age2 = ageˆ2,
log.age = log(age),
female = 1,
bachelor = 1)

Effect of age increases from 25 to 26 and from 33 to 34 on expected earnings:

ages.preds <- data.frame(ages,
pred.a = predict(mods.ab[[1]], newdata = ages),
pred.b = predict(mods.ab[[2]], newdata = ages),
pred.c = predict(mods.cdi[[1]], newdata = ages),
pred.d = predict(mods.cdi[[2]], newdata = ages),
pred.i = predict(mods.cdi[[3]], newdata = ages))

ages.preds

## age age2 log.age female bachelor pred.a pred.b pred.c pred.d
## 1 25 625 3.218876 1 1 21.02880 2.916019 2.909950 2.893209
## 2 26 676 3.258097 1 1 21.56007 2.940210 2.938008 2.932450
## 3 33 1089 3.496508 1 1 25.27900 3.109548 3.108561 3.102957
## 4 34 1156 3.526361 1 1 25.81027 3.133739 3.129917 3.112433
## pred.i
## 1 2.898165
## 2 2.937560
## 3 3.108545
## 4 3.118003

Then we can get their predictions for the differences by subtracting row 2 by row 1 and row 4 by row 3:

# Age effect from age 25 to age 26
(ages.preds[2,]-ages.preds[1,])[,6:10]

## pred.a pred.b pred.c pred.d pred.i
## 2 0.5312752 0.02419116 0.02805752 0.0392405 0.0393943

# Age effect from age 33 to 34
(ages.preds[4,]-ages.preds[3,])[,6:10]

## pred.a pred.b pred.c pred.d pred.i
## 4 0.5312752 0.02419116 0.02135606 0.009475901 0.009458534
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Part e: Do you prefer the regression in (c) to the regression in (b)? Explain.

Part f: Do you prefer the regression in (d) to the regression in (b)? Explain.

Part g: Do you prefer the regression in (d) to the regression in (c)? Explain.

Displaying them again:

etable(mods.ab, mods.cdi, markdown = T)

Dependent Variables: ahe log.ahe
Model: (1) (2) (3) (4) (5) (6)
Variables
Constant 2.045 2.027∗∗∗ 0.3233 0.4187 0.4119 0.2905

(1.324) (0.0600) (0.1986) (0.6696) (0.6694) (0.9145)
age 0.5313∗∗∗ 0.0242∗∗∗ 0.1341∗∗∗ 0.1348∗∗∗ 0.1392∗∗

(0.0446) (0.0020) (0.0456) (0.0456) (0.0622)
female -4.144∗∗∗ -0.1776∗∗∗ -0.1775∗∗∗ -0.1774∗∗∗ -0.1903∗∗∗ -0.0345

(0.2624) (0.0115) (0.0115) (0.0115) (0.0161) (1.336)
bachelor 9.846∗∗∗ 0.4615∗∗∗ 0.4615∗∗∗ 0.4616∗∗∗ 0.4521∗∗∗ 0.4514∗∗∗

(0.2613) (0.0115) (0.0115) (0.0115) (0.0155) (0.0155)
log.age 0.7154∗∗∗

(0.0586)
age2 -0.0019∗∗ -0.0019∗∗ -0.0019∗

(0.0008) (0.0008) (0.0010)
female × bachelor 0.0235 0.0231

(0.0229) (0.0229)
female × age -0.0013

(0.0911)
female × age2 -0.0001

(0.0015)
Fit statistics
Observations 7,098 7,098 7,098 7,098 7,098 7,098
R2 0.18964 0.20837 0.20863 0.20901 0.20913 0.20971
Adjusted R2 0.18930 0.20804 0.20829 0.20857 0.20857 0.20893

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The regressions differ in their choice of one of the regressors. They can be compared on the basis of the R2.
The regression in (3) has a (marginally) higher R2, so it is preferred.

The regression in (4) adds the variable Age2 to regression (2). The coefficient on Age2 is not statistically
significant (t = -1.72) and the estimated coefficient is very close to zero. This suggests that (2) is preferred
to (4), the regressions are so similar that either may be used.

The regressions differ in their choice of the regressors (ln(Age) in (3) and Age and Age2 in (4)). They can
be compared on the basis of the R2. The regression in (4) has a (marginally) higher R2, so it is preferred.
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Part h: Plot the regression relation between Age and ln(AHE) from (b), (c), and
(d) for males with a high school diploma. Describe the similarities and differences
between the estimated regression functions. Would your answer change if you
plotted the regression function for females with college degrees?

The regression functions are very similar, particularly for Age between 27 and 33 years. The quadratic
regression shows somewhat more curvature than the log-log regression, but the difference is small. The
regression functions for a female with a high school diploma will look just like these, but they will be shifted
by the amount of the coefficient on the binary regressor Female. The regression functions for workers with
a bachelor’s degree will also look just like these, but they would be shifted by the amount of the coefficient
on the binary variable Bachelor.

Part i: Run a regression of ln(AHE) on Age, Age2, Female, Bachelor, and the
interaction term Female * Bachelor.

etable(mods.cdi[[3]], markdown = T)

Dependent Variable: log.ahe
Model: (1)
Variables
Constant 0.4119

(0.6694)
age 0.1348∗∗∗

(0.0456)
age2 -0.0019∗∗

(0.0008)
female -0.1903∗∗∗

(0.0161)
bachelor 0.4521∗∗∗

(0.0155)
female × bachelor 0.0235

(0.0229)
Fit statistics
Observations 7,098
R2 0.20913
Adjusted R2 0.20857

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

What does the coefficient on the interaction term measure?

The coefficient on the interaction term Female · Bachelor shows the “extra effect” of Bachelor on ln(AHE)
for women relative to that for men.
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Alexis is a 30-year-old female with a bachelor’s degree. What does the regression predict for
her value of ln(AHE)?

Jane is a 30-year-old female with a high school diploma. What does the regression predict for
her value of ln(AHE)?

Bob is a 30-year-old male with a bachelor’s degree. What does the regression predict for his
value of ln(AHE)?

Jim is a 30-year-old male with a high school diploma. What does the regression predict for
his value of ln(AHE)?

people <- data.frame(name = c('Alexis', 'Jane', 'Bob', 'Jim'),
age = c(30, 30, 30, 30),
female = c(1, 1, 0, 0),
bachelor = c(1, 0, 1, 0)) %>%

mutate(age2 = ageˆ2)

preds <- data.frame(people,
predictions = predict(mods.cdi[[3]], newdata = people))

preds

## name age female bachelor age2 predictions
## 1 Alexis 30 1 1 900 3.057717
## 2 Jane 30 1 0 900 2.582129
## 3 Bob 30 0 1 900 3.224567
## 4 Jim 30 0 0 900 2.772454

What is the predicted difference between Alexis’s and Jane’s earnings?

preds$prediction[1]-preds$prediction[2]

## [1] 0.4755878

Alexis’ predicted earnings are 0.476 higher than Jane’s

What is the predicted difference between Bob’s and Jim’s earnings?

preds$prediction[3]-preds$prediction[4]

## [1] 0.4521137

Bob’s predicted earnings are 0.452 higher than Jim’s
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Part j: Is the effect of Age on earnings different for men than for women? Specify
and estimate a regression that you can use to answer this question.

Parts j, k, and l all ask for additional regressions so combining them into one command:

mods.jkl <- feols(log.ahe ~ sw(female*bachelor + female*age + female*age2,
female*bachelor + bachelor*age + bachelor*age2,
female*bachelor + female*age + female*age2 + bachelor*age + bachelor*age2),

cps, se = 'HC1')

For model j, we include two additional regressors: the interactions of female and the two age variables, age
and age2.

etable(mods.jkl[[1]], markdown = T)

Dependent Variable: log.ahe
Model: (1)
Variables
Constant 0.2905

(0.9145)
female -0.0345

(1.336)
bachelor 0.4514∗∗∗

(0.0155)
age 0.1392∗∗

(0.0622)
age2 -0.0019∗

(0.0010)
female × bachelor 0.0231

(0.0229)
female × age -0.0013

(0.0911)
female × age2 -0.0001

(0.0015)
Fit statistics
Observations 7,098
R2 0.20971
Adjusted R2 0.20893

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

# Re-estimating model j asn lm_robust object so we can use linearHypothesis
mod.j <- lm_robust(log.ahe ~ female*bachelor + female*age + female*age2, cps, se_type = 'HC1')
# Testing joint significance of the age-female interactions
linearHypothesis(mod.j, c('female:age = 0', 'female:age2 = 0'), test = 'F')

## Linear hypothesis test
##
## Hypothesis:
## female:age = 0
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## female:age2 = 0
##
## Model 1: restricted model
## Model 2: log.ahe ~ female * bachelor + female * age + female * age2
##
## Res.Df Df F Pr(>F)
## 1 7092
## 2 7090 2 2.6372 0.07163 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The F-statistic testing the null hypothesis that the coefficients on these interaction terms are both equal
to zero is F = 2.64 with a p-value of 0.07. This implies that there isn’t sufficient evidence to reject the
null hypothesis that there is a different effect of Age on ln(AHE) for men compared to women at the 1%
confidence level.

Part k: Is the effect of Age on earnings different for high school graduates than
for college graduates? Specify and estimate a regression that you can use to
answer this question.

Same as above but age interactions on bachelor instead:

etable(mods.jkl[[2]], markdown = T)

Dependent Variable: log.ahe
Model: (1)
Variables
Constant 0.0783

(0.9216)
female -0.1903∗∗∗

(0.0161)
bachelor 1.093

(1.336)
age 0.1604∗∗

(0.0627)
age2 -0.0024∗∗

(0.0011)
female × bachelor 0.0242

(0.0229)
bachelor × age -0.0492

(0.0910)
bachelor × age2 0.0009

(0.0015)
Fit statistics
Observations 7,098
R2 0.20936
Adjusted R2 0.20858

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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# Re-estimating model k asn lm_robust object so we can use linearHypothesis
mod.k <- lm_robust(log.ahe ~ female*bachelor + bachelor*age + bachelor*age2, cps, se_type = 'HC1')

Testing the null hypothesis of no difference in the age association with log earnings between college-educated
and non-college-educated people:

linearHypothesis(mod.k, c('bachelor:age = 0', 'bachelor:age2 = 0'), test = 'F')

## Linear hypothesis test
##
## Hypothesis:
## bachelor:age = 0
## bachelor:age2 = 0
##
## Model 1: restricted model
## Model 2: log.ahe ~ female * bachelor + bachelor * age + bachelor * age2
##
## Res.Df Df F Pr(>F)
## 1 7092
## 2 7090 2 1.0333 0.3559

The associated p-value is 0.3559 so we cannot reject the null hypothesis at any reasonable confidence level.

Part l: After running all these regressions (and any others that you want to
run), summarize the effect of age on earnings for young workers.

We’ll run an additional regression with both sets of age interaction terms:

etable(mods.jkl[[3]], markdown = T)
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Dependent Variable: log.ahe
Model: (1)
Variables
Constant 0.0302

(1.051)
female -0.0400

(1.363)
bachelor 0.9409

(1.363)
age 0.1602∗∗

(0.0715)
age2 -0.0023∗

(0.0012)
female × bachelor 0.0240

(0.0229)
female × age 0.0002

(0.0928)
female × age2 -0.0002

(0.0016)
bachelor × age -0.0405

(0.0927)
bachelor × age2 0.0008

(0.0016)
Fit statistics
Observations 7,098
R2 0.21007
Adjusted R2 0.20907

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

# mods.l <- lm_robust(log.ahe ~ female*bachelor + female*age + female*age2 + bachelor*age + bachelor*age2, cps, se_type = 'HC1')
# summary(mods.l)

This is a weirdly demanding question so no need to know the following commands. Including here just for
completion.

Let’s create a table of predicted values using this model for earnings from ages 25-35 for all possible combi-
nations of female and bachelor

# Create a grid of combinations for the binary variables
combos <- expand.grid(female = c(0, 1), bachelor = c(0, 1))

# Create a data frame to store the predictions of the model for each combination from all ages from 25-35
preds <- expand.grid(age = 20:50,

female = c(0,1),
bachelor = c(0,1)) %>%

mutate(age2 = ageˆ2)

# Generate predictions
preds$ahe.hat <- predict(mods.jkl[[3]], newdata = preds)
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# Plot these for different subgroups
ggplot(preds, aes(x = age, y = ahe.hat, color = female==1, lty = bachelor==1)) +

theme_bw() +
geom_smooth(method = 'lm', formula = y ~ poly(x, 2, raw = TRUE), se = FALSE) +
labs(color = 'Female', lty = 'College-educated')
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