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1 “Identifying variation”

Think back to our very simple single-variable regression model:

Y = β0 + βX + u (1)

If the regression model above is true, then any variation in Y we
observe in our data must be explaiend by variation in X and/or
variation in u, i.e., the sum of all other relevant contributors to Y .
To produce an unbiased estimate of β, the expected change in Y

attributable to a linear change in X, we at the least need data with
enough variation in X that we can compare Y at different values
of X. In addition, we need this variation in X to be independent of
variation in all other contributors to Y , i.e., variation in u, even if we
cannot measure it. This is what the OLS assumption E[u|X] = 0

captures.
If the OLS assumption above holds, then these are completely sep-
arable sources of variation: X does not co-vary with u and re-
gressing Y on X permits an unbiased measure of the association
between them. In this ideal case, all the variation in X can be con-
sidered “identifying variation” because it can be used to “identify” β
without bias. You can think of our econometrics course as cover-
ing the search for valid identifying variation under contexts where
the OLS assumptions do not necessarily hold.
A takeaway here is that as much as possible, we generally want
to have more variation in our explanatory variable(s) and ideally as
little variation as possible in everything else we don’t observe that
explains Y . Mathematically, we want as much of the variation in
Y in our data to come from variation in X rather than variation in
u. This can be seen in the expression we saw in lecture for the
sampling distribution of β̂ under OLS assumptions:

β̂OLS ∼ N

(
β,

σ2
u

n(σ2
X)2

)
(2)

Concentrating on the variance term here, we see that the numer-
ator contains the variance of u and the denominator contains (the
square of) the variance in X. This means that when the variance
of our explanatory variable increases relative to the variance of the
error, the variance of our estimator decreases and our estimate be-
comes more precise. Otherwise, we are increasingly vulnerable to
the exact same estimation problem that we face when we have a
small sample size n (which also appears in the denominator): our
estimates are too imprecise to be useful.
As a sidenote, this also recalls the question in the first problem set
which asked how a regression coefficient can be significant when

the R2 is low. While σ2
u

(σ2
X)2

is not the formula for R2, which is the

proportion of variation explained by the covariates, they are obvi-

ously inversely related so that an increase in σ2
u

(σ2
X)2

corresponds

to a decrease in R2. Thus we can see that a smaller R2 implies

larger standard errors and thus makes it more difficult to find ev-
idene against the null hypothesis. But as long as there is some
positive variance in X, meaning there are multiple values of X in
the dataset, we can produce precise estimates as long as n is large
enough to offset the low R2. Indeed, this is very common in eco-
nomics research where studies very rarely have R2 greater than,
say, 0.6: it is rarely the case that a major outcome of interest like
a poverty rate can be dominantly explained by a small set of vari-
ables we have data on, but this does not prevent us from identifying
important contributors.

2 Multiple linear regression model

If the OLS assumption above doesn’t hold, then at least some of
the variation in X co-moves with some of the variation in u in a way
we do not observe. The same simple regression of Y on X would
really be measuring the combined effect of X and some compo-
nent(s) of u but attributing it only to X. This is our familiar omitted
variable bias result. The total variation in X is no longer valid for
identifying β. To unbias our estimate, we’d need to use only a com-
ponent of the variation in X which does not co-vary with u. We’ve
encountered one way to do this: control variables. By including
some relevant omitted variable(s) W , our estimate of β comes not
from comparing the Y in observations with low X to high X but
from comparisons of observations with low X to high X with the
same value of W . Our identifying variation comes from the com-
ponent of the variation in X which does not vary in W . Problem
solved so long as this identifying variation is great enough. We
get in trouble if there is very little variation in X that does not also
co-vary with W , i.e., when X and W are highly correlated. High
enough correlation between X and W means that for a given level
of W , there is very little variation in X. Going back to the equation
above, the variation in X which isn’t already explained by W that
we’re using for identification is so small that the variance in our esti-
mator can prevent precise estimation unless we have large enough
n to compensate for it. Otherwise, there is simply too much corre-
lation between X and W that we cannot separate the influence of
one from the influence of the other.

2.1 Omitted variable bias

Recall this expression for omitted variable bias from Lecture 6:

β̂1
p−→ β1 +

(
σu

σx

)
ρxu (3)

The term being added to β1 on the RHS is a measure of omitted
variable bias. First look at the term in parentheses. The bias can
decrease in magnitude in two ways: by decreasing the standard
deviation of the error term—which in practice might mean getting

Matthew Alampay Davis - June 9, 2023



as much data on omitted variables as possible to use as controls—
or by increasing the standard deviation of the explanatory variable
of interest, which clearly relates to our discussion above on identi-
fying variation.
The same problematic correlation mentioned above appears here
as ρxu, the source of omitted variable bias in the first place. So
we’ve just said that variance in the error term is bad, but it’s
unavoidable: you can’t possibly include every variable that con-
tributes to crop yields. But it only causes omitted variable bias if
it’s correlated with your explanatory variable of interest, like precip-
itation is with temperature.
One last thing on OVB. We know the term in parentheses is always
going to be positive since standard deviations are always positive.
This means then that the sign of the bias will be the same as the
sign of the correlation between the error term and our regressor
of interest. In recitation, my omitted-variable example was using
precipitation as a control in a regression estimating the effect of
temperature on crop yields. We suspect that rainy days tend to be
cooler days so the correlation between precipitation and tempera-
ture should be negative. Thus, we would argue that the estimate of
β̂temperature that we get from the regression of crop yields on tem-
perature without including a precipitation control should be biased
to be smaller than the ‘true’ value of βtemperature.
This is easy to think about when we only consider one omitted vari-
able and one regressor. If we have multiple suspected omitted vari-
ables, then it is much more difficult to try to figure out the direction of
the omitted variable bias without looking at data. Similarly, the re-
lationship between temperature and precipitation may work in mul-
tiple channels: an increase in temperature may increase the mois-
ture content of the air, which may make precipitation more likely or
more severe. If so, this positive relationship works in the opposite
direction of the more intuitive relationship between the variables
and may complicate our idea for the sign of ρxu. Econometrics is
hard.

2.2 Control variables

Re-iterating what was said above about control variables and iden-
tifying information using the example just introduced. We want
our data to contain days where Temperature takes on a wide
range of values holding all other determinants of Y fixed. We
know we also want to include a variable that we suspect would
cause significant bias if we did not include it, i.e. Precipitation

in our example. For omitted variable to be present, Temperature

and Precipitation must be correlated, whether positively or neg-
atively. But if Precipitation is very negatively correlated with
Temperature then we’ll have very few observations in our data
where Temperature is high and Precipitation is low or where
Temperature is low and Precipitation is high. For a given pre-
cipitation level, the range of possible temperatures is much smaller
than if we didn’t control for precipitation and our identifying varia-
tion is smaller and our estimate of the effect of Temperature on
Y ields will be less precise. Even more, we might think that other
variables like Humidity and Elevation are relevant. The more co-
variates we add, the more identifying variation we sacrifice to guard

against omitted variable bias. If a setting is complicated enough,
there may no satisfactory way to estimate the desired effect even
with data on as many control variables as we want.
In the extreme, ρxu = 1 or −1 and we get multicollinearity. In that
case, we have no identifying variation in X since we can never
control for W . We can never disentangle the effect X is having
on Y from the effect W is having on Y and so the inclusion of W
as a control variable actually does not reduce any bias in our esti-
mate. This is why R and Stata will automatically remove covariates
that are perfectly collinear with another covariate. We either have
to drop one of these covariates or include the covariates but drop
the intercept which, since it is a constant, is collinear with a linear
combination of the covariates.
In the other extreme, if X and W are independent, then ρxu = 0

(though note the converse is not necessarily true). In such a case,
the bias becomes zero and the estimates of β are unbiased in the
regression of Y on X regardless of whether W is included as a
control.
In practice, adding additional regressors to most models we look
at in this course won’t be particularly problematic for identification
until we get to the machine learning topic in the second half of the
course where consider models with very many regressors. Still, I
wanted to make these points to show that adding control variables
does not come free. We’ll also see when we get to panel data that
in some contexts, there are more efficient ways to remove bias than
just adding a ton of control variables.

3 Joint significance

Above, I noted that if two covariates have high enough correlation,
then it becomes impossible to disentangle the two effects and we
can not confidently estimate the effect of one covariate on the out-
come variable. This can be related to the topic of joint significance
tests: sometimes, we don’t care whether a specific variable is rel-
evant but whether at least one of several variables jointly have a
significant effect, regardless of which it is.
A couple of exam-type questions to think about on your own: if two
covariates are jointly significant at a given level, does this mean
that at least one of them has a t-statistic that is also significant at
that level? And conversely, if one covariate has a t-statistic that is
individually significant, does that mean that the joint significance
test of that covariate and another covariate must be jointly signifi-
cant?

General problem set and exam advice

• Read and answer the entire question/subquestion especially
if you’re feeling the pressure of a timed exam. They often ask
you for multiple things or to explain your answer and people
often lose easy points by only providing the first thing they
ask for.

• Interpreting coefficients

– A subquestion that comes up in problem sets and past
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exams a lot asks you to “interpret” a regression coeffi-
cient. If so, it is not enough to say it is significant or what
its sign is. You should try to translate it into a claim along
the lines of

“An increase in X by one [unit/percent/percentage
point] is associated with an increase in Y of
[β̂].”

– We never make definite claims like “X causes Y to in-
crease” or “An increase in X by 1 will increase Y by [β̂]”
or “If there is zero X, then Y will be [β̂0]. We are pro-
ducing estimates with uncertainty from a simple model
built on strong assumptions and that’s how we should
talk about them
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